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FOREWORD 

This book fills a gap in the actuarial literature. It deals with the application of 
actuarial principles and techniques to public social insurance pension schemes. 
Generally, these schemes are national in scope, mandatory and financed by 
contributions related to participants' earnings. Mature defined benefit public 
schemes are generally financed according to the pay-as-you-go system. 
Others, especially schemes in developing countries, adopt various levels of 
advance funding to finance the benefits. 

Appropriate systems for financing public defined benefit pension schemes 
are widely debated. This volume contributes to the discussion by highlighting 
aspects where the financing of social security pensions diners from the funding 
of occupational pension schemes. 

The book constitutes a ready reference for social security actuaries. While it 
is intended to serve as a textbook for persons engaged in actuarial work in social 
security institutions, it is of interest to other actuaries. 

Subramaniam Iyer was commissioned to write the volume by the Inter- 
national Social Security Association. An Honorary Fellow of the Institute of 
Actuaries and a Member of the Swiss Association of Actuaries, he had a distin- 
guished career with the Social Security Department of the International Labour 
Office from which he retired as Chief of the Financial, Actuarial and Statistical 
Branch. During his career, he acquired extensive expertise in the financing and 
actuarial valuations of social security pension schemes, particularly those in 
developing countries and in economies in transition. 

This book is one of a series on financial, actuarial and statistical aspects of social 
security which is being prepared jointly by the International Social Security Asso- 
ciation and the Social Security Department of the International Labour Office. 

Colin Gillion, Director Dalmer D. Hoskins, Secretary General 
Social Security Department International Social Security Association 
International Labour Office Geneva, Switzerland 
Geneva, Switzerland 





PREFACE 

It is a privilege for me to have been asked by the International Social Security 
Association (ISSA) to write this book. 

The book, I believe, provides a useful complement to the actuarial texts on 
pensions available in the English language. For while there is no dearth of text- 
books on the actuarial mathematics of occupational pensions, there does not 
appear to be any comparable volume on social security pensions. 

Where social security pensions are financed on a pay-as-you-go basis, there 
is perhaps less scope for a sophisticated theoretical approach to the subject. It is, 
however, a historical fact that, in the early days of social security, social 
insurance pensions were financed according to an extension of the full-funding 
principle of occupational pensions. Although interest in funding waned over the 
years, the debate between the proponents of pay-as-you-go and funding is not 
over, and there has recently been a resurgence of interest in funding. At the 
present time, various levels of social security funding are practised by different 
countries, including full funding of defined contribution social security schemes. 

The International Labour Office (ILO) has, over several decades, provided 
actuarial services to many national governments for the introduction or 
review of social security programmes. In the course of this work, which related 
largely to developing countries, but was more recently extended to Central and 
Eastern European transition economies, the ILO has developed new approaches 
and techniques. The ISSA, for its part, provided a valuable forum for discussing 
both the traditional and the innovative methodologies at the series of Inter- 
national Conferences of Social Security Actuaries and Statisticians. This book 
draws considerably from this rich actuarial material. 

The book also aims at establishing a link between social security financing 
methods and occupational pension funding methods. This highlights the 
differences which exist between the two sets of methods, despite the inherent 
similarities. It is thus hoped that the book will be useful not only to social 
security actuaries, but also to actuaries specializing in occupational pensions 
for obtaining an understanding of the other field. However, it is not intended 
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as a textbook on occupational pension funding, which is treated only in 
outline. 

The introduction provides a brief description of the content of the book. The 
material is then presented in two parts. Part I, which deals with the theory, con- 
tains four chapters. Chapter 1 introduces the basic theory of the financing of 
social security pensions. This is followed by Chapter 2, which establishes the 
link with occupational pension funding. In Chapter 3, advanced topics related 
to social security pension financing are discussed. Chapter 4 is devoted to 
defined contribution schemes. The treatment in Part I throughout is on the 
basis of continuous functions, which helps to emphasize principles and inter- 
relationships, and to elucidate the impact of different funding approaches. 

Part II is concerned with techniques and comprises two chapters. Chapter 5 
deals with the projection technique, which is ideally suited for the actuarial ana- 
lysis of social security pensions. However, for the sake of completeness, the 
more traditional present value technique is included, in Chapter 6. In keeping 
with the practical nature of the subject-matter of Part II, the treatment is 
entirely in terms of discrete functions. 

Six appendices complete the book. Appendix 1 provides a very brief 
summary of basic actuarial mathematics, to serve as a ready reference for 
readers. Appendix 2 illustrates the methods discussed in Chapters 1 and 2 
with reference to a simple, hypothetical pension scheme. Appendix 3 is a 
glossary of the principal financing and funding methods, while Appendix 4 
lists the various symbols used in the book. Appendices 5 and 6 contain further 
mathematical development of certain results stated in the text. Finally, a 
bibliography gives recognition to the many scientific papers and textbooks 
which were consulted during the preparation of the book. 

This book is not a manual but a basic textbook. The reader will find here the 
principles underlying the mathematical theory and techniques of social security 
pensions, presented with reference to relatively simplified models. The actuarial 
practitioner will need to adapt this material to suit specific conditions and 
circumstances, and develop or acquire the necessary computer software for 
the purposes of practical application. 
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INTRODUCTION 

This book is about social security pension schemes. These are institutionalized 
arrangements for the protection of the aged, the disabled, and dependants 
who lose their breadwinner through death, which are set up at the national 
level through government initiative. The provisions of such a scheme are laid 
down in legislation; these cover, in particular, the rights and obligations of all 
individuals and establishments affected by the scheme, including the contri- 
butions to be paid and the benefits to be received. Such a scheme is usually 
mandatory for specified categories of the population (e.g. some or all employed 
persons, some or all economically active persons, all residents). It is adminis- 
tered directly by a government department or agency or by an autonomous 
parastatal organization subject to government supervision. The scheme's sol- 
vency and ability to pay future benefits is, in most cases, guaranteed, implicitly 
or explicitly, by the government. 

Statutory social security pension schemes are complemented by private 
pension schemes which may provide "top-up" benefits or may be accepted as 
alternatives to the national scheme if members of such schemes are allowed 
to "contract out" of it. Private schemes often take the form of occupational 
pension schemes, which are sponsored by individual employers or groups of 
employers, or they may be organized as mutual funds or commercially run 
funds. There are also other voluntary arrangements, such as personal pension 
policies and annuity policies issued by insurance companies. 

Both social security pension schemes and occupational pension schemes 
may take one of two different forms: defined benefit or defined contribution. 
Essentially the difference is that, in the former case, the benefit formula is 
specified and the financing arrangements - including, in particular, the contri- 
butions payable - are determined as the amounts needed to finance the benefits; 
in the latter, the contributions to be paid are specified, and the benefits are what 
result from investing these specified contributions. 

This book is mainly concerned with social security pension schemes of the 
defined benefit type, but consideration is also given to defined contribution 
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social security schemes. It is assumed that the reader is familiar with the general 
structure of such schemes. A summary description is provided below of the 
design features of these schemes and the common variations which arise in 
practice; reference may be made to other sources for more details (e.g. ILO, 
1984). The book refers to retirement benefits of occupational pension schemes 
for comparison purposes but does not discuss other private scheme benefits. 
Accordingly, no description of the benefit structure of these schemes is 
provided, but the interested reader may refer to other specialized publications 
(e.g. Lee, 1986). 

DEFINED BENEFIT SOCIAL SECURITY PENSION SCHEMES 

Sources of finance 

The sources of finance of social security pension schemes may include one or 
more of the following: contributions paid by the individuals covered by the 
scheme; contributions paid by the employers on behalf of covered employed 
persons; government subsidies and earmarked taxes. 

Contributions may be flat rate or earnings related. In the context of earnings- 
related contributions, "earnings" may refer not to total earnings but only to 
earnings up to a specified ceiling, above a specified threshold or between two 
levels. Contribution rates may be uniform or may vary according to the level 
of earnings (system of wage-classes). 

Qualifying conditions for pensions 

The contingencies or risks covered by defined benefit social security pension 
schemes include retirement on attainment of a particular age, inability to con- 
tinue working on account of invalidity, and death while in active status or 
when in receipt of a retirement or invalidity pension. 

Retirement pensions are normally subject to retirement from active employ- 
ment, the attainment of a specified age and the satisfaction of a specified mini- 
mum qualifying period. A lower pensionable age may apply to females relative 
to males, or to particular classes of members. Retirement with a normal scale 
pension at an earlier age may be permitted in certain cases, for example, for per- 
sons engaged in arduous or unhealthy work or for those considered to be pre- 
maturely aged. Voluntary retirement at an earlier age with a reduced pension 
may be allowed, subject to qualifying service conditions being satisfied. 

The qualifying period usually refers to calendar periods of contribution but, 
depending on the scheme, may refer to periods of insurance, employment or 
residence (for consistency, the term insurance period wul be used below). Periods 
of incapacity for work due to sickness, maternity or employment injury, or of 
child-rearing or caring for an invalid, may be assimilated to insurance periods. 
When a new pension scheme is introduced, transitional provisions may provide 
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for a lower qualifying period for the initial entrants above a certain age. 
Sometimes a contribution density condition, that is, the credit of a minimum 
service period per year of membership, may also be required to be satisfied. 

Invalidity pensions are, in the first instance, subject to the condition of 
existence of at least a specified degree of invalidity according to an adopted 
definition, which could be based on one of three concepts: physical, occupational 
or general invalidity. Physical invalidity refers to the loss of a bodily part or of a 
physical or mental faculty; occupational invalidity refers to the loss of earning 
capacity in the previous occupation; general invalidity refers to the loss of the 
capacity to carry out any remunerative activity. The minimum degree of 
invalidity to qualify usually varies from one-half to two-thirds. In addition, a 
qualifying period - considerably shorter than that required for retirement 
pensions - or a contribution density condition is generally imposed. 

Survivors' pensions are provided to specified dependants (mainly widows/ 
widowers and orphans), subject to the condition that either the deceased insured 
person would have qualified for an invalidity pension had he or she claimed such 
a pension on the date of death or was already in receipt of a retirement or inva- 
lidity pension. The widow may be required to satisfy further conditions such as 
having attained a specified minimum age, being disabled or having the care of 
young children. The widow's pension often ceases on her remarriage, sometimes 
with the payment of a lump-sum remarriage grant. The orphan's pension is dis- 
continued on attaining a specified age but may be extended under certain circum- 
stances, for example if the child is pursuing full-time education or is disabled. 

When the insurance period is not sufficient to qualify for a retirement, 
invalidity or survivors' pension, a lump-sum grant may be provided. 

The pension formula 

The pension formula can be either^ai rate or earnings related. (In what follows, 
the word salary is used interchangeably with earnings.) A flat-rate formula 
provides for pensions which are uniform in amount, regardless of the level of 
the individual's earnings, while an earnings-related formula links the pension 
to the previous salary of the individual. Earnings refer to the insured salary, 
which may be different from the actual salary due to the application of a 
threshold and/or a ceiling. A mixed formula is also possible, with flat-rate 
and earnings-related elements. 

With earnings-related pensions, the basis of calculation may be the final, 
the final average or the career average insured salary of the individual. The 
final average is typically computed over the last one to five years of the 
career. Where the career average basis is used, the component salaries entering 
into the computation of the average may be indexed to compensate for the rise 
in the general level of earnings up to the time of the award of the pension. 

The replacement rate, that is, the pension amount as a percentage of 
the salary used as the basis of calculation will, in an earnings-related scheme, 
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typically consist of the sum of a flat percentage independent of the length of the 
insurance period and a variable percentage linked to the insurance period. A 
maximum percentage is usually prescribed for the replacement rate. The same 
type of pension formula will generally apply to retirement, invalidity and 
survivors' pensions. Minimum and maximum pensions may be prescribed in 
absolute terms (i.e. in monetary units). 

In the case of entrants who are over a specified age when a scheme is started, 
special credits of insurance periods, increasing by age, may be awarded to 
compensate for their inability to complete a full insurance record. For invalidity 
pensions, special credits, decreasing by age, may be awarded to compensate for 
the loss of potential future insurance periods; by extension, these credits may 
also apply to survivors' pensions arising from the death of active insured persons. 

The survivors' pension calculated according to the pension formula is 
usually allocated to individual survivors according to prescribed percentages, 
subject to the total of all the shares not exceeding 100 per cent of the global sur- 
vivors' pension. 

Indexation of pensions 

The legislation may provide for a systematic or automatic adjustment of pen- 
sions, that is, it may lay down the procedure and the method of adjustment; 
or for adjustment in principle only, in which case a regular review may be 
required without specifying how any increase is to be determined. Where the 
legislation does not contain any provision on indexation, ad hoc adjustment 
may be provided from time to time by the concerned authorities. The mechan- 
ism of indexation may be based on the cost-of-living index, an index of earnings, 
or some mixture of the two, and limits may apply to the extent of adjustment 
either in absolute terms or as a proportion. Indexation should normally also 
apply to parameters expressed in monetary units, such as earnings thresholds 
or ceilings and maximum and minimum pension amounts. 

DEFINED CONTRIBUTION SOCIAL SECURITY SCHEMES 

One type of defined contribution social security scheme is a national provident 
fund. An individual account is opened in the name of each member of the 
provident fund, in which the member's (and, if applicable, the employer's) 
contributions are registered. There is usually no state contribution or subsidy. 
Interest is added from time to time to the account. The accumulated balance 
is generally paid as a lump sum on retirement, attainment of invalidity or 
death before retirement. Death after retirement is not a directly covered contin- 
gency. An option to convert the lump-sum benefit into an annuity is sometimes 
available. Partial withdrawals from the account may also be permitted for other 
purposes, particularly for the purchase of residential property, education of 
children or health care expenses. 
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The Chilean social security reform of 1981 gave rise to another type of 
defined contribution scheme, which is referred to as a mandatory retirement sav- 
ings scheme. Such a scheme, although statutory, is administered by private com- 
panies which are subject to government supervision. Contributions are paid by 
the members only. Individual accounts are maintained as in national provident 
funds, but schemes are required to guarantee a minimum rate of interest. On 
retirement of a member, the accumulated balance is mandatorily converted 
into an indexed pension subject to a specified minimum which is guaranteed 
by the State. Invalidity and survivors' benefits are provided through separate 
insurance arrangements (for details see Gillion and Bonilla, 1992). 

There are also hybrid schemes, such as those based on the "points system", 
where there is a defined benefit but it is calculated by a formula which derives 
from the contributions paid. Monetary contributions are converted into 
points based on the value of the point when the contribution is made; the pen- 
sion, which depends on the total number of accumulated points, is in turn 
converted back into monetary units based on the value of the point at the 
time of payment. 

Another hybrid is the "notional defined contribution scheme", where con- 
tributions are credited to individual accounts but used to pay current pensions. 
The notional balances in the accounts are credited annually with a growth 
factor (e.g. real wage growth, growth in gross domestic product), and at 
retirement the notional balances are converted into pensions. The scheme is 
unfunded, while the benefit is based on an individual account accumulation 
as in a traditional defined contribution scheme. During the accumulation 
period it closely resembles a career average, adjusted earnings, defined benefits 
scheme (McGillivray, 1997). 
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THE FINANCING OF SOCIAL SECURITY 
PENSIONS 1 

1.1     INTRODUCTION 

When a pension scheme is set up, one of the major questions to be resolved is the 
method of financing the scheme. By this is meant the arrangement according 
to which resources will be raised to meet the expenditures (on benefits, and 
possibly on administration as well) under the scheme, as they arise. In other 
words, this refers to the system governing the amount and timing of the contri- 
butions to the scheme. As will be seen later, there are several different methods 
by which a given pension scheme may be financed. 

This chapter first identifies the basic demographic and economic parameters 
which affect, on the one hand, a pension scheme's expenditures and, on the 
other, the insured salaries of the covered population on which the contributions 
to the scheme are generally based. It then discusses the characteristic trend over 
time of these financial aggregates and enunciates the basic mathematical prin- 
ciples of financing. It next addresses the special considerations which arise 
with social security pension schemes and presents the main financial systems 
employed in this area. The corresponding discussion of occupational pension 
schemes is the subject of Chapter 2. 

The initial analysis will refer to a new pension scheme rather than to an 
ongoing scheme. This will permit a view of the whole spectrum of its financial 
evolution over time. Further, in order to simplify the treatment, the discussion 
is based on a highly simplified model of reality. It is assumed that a projection 
has been made, at the outset, of the future financial aggregates and that the 
experience will conform exactly to the initial expectation. On this basis, the dif- 
ferent financing methods which may be applied to the scheme are discussed. 
This forward planning approach highlights the long-term financial implications 
of a pension scheme. 

The reality, however, is much more complex. In particular, it is highly 
unlikely that the projection made at the outset of the scheme will be exactly 
realized. In fact, it should be expected that the projection exercise will be 
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repeated at intervals, and adjustments or refinements made from time to time to 
the financing method under application. These practical aspects are taken up in 
Part II of this book. 

In order to concentrate on essentials, the analysis will refer mainly to a 
scheme with a pension formula which is strictly proportional to the period of 
contributory membership and the final salary of the insured person. Moreover, 
attention will be focused on retirement pensions. These restrictions do not, how- 
ever, invalidate the wider applicability of the theory which is developed. The 
extension of the principles to invalidity and survivors' pensions is considered 
in Chapter 3. 

The terms "contributions" and "contribution rate" refer to the total 
resources allocated to the scheme by all the contributing parties, including the 
employer, the covered employee and possibly the State as well. 

1.2    THE BASIC DEMOGRAPHIC AND ECONOMIC 
PARAMETERS 

The future course of a retirement pension scheme is determined, in the first 
instance, by the demographic and economic characteristics of the population 
initially covered. Further, it is determined by a series of factors, demographic 
and economic, which will be experienced by the scheme over its lifetime. In gen- 
eral, these parameters will vary over time. For the present purposes, however, it is 
assumed that they maintain a constant, positive value. They include, in particular: 

• the force of interest: 6 
• the force of growth of new entrants: p 
• the force of escalation of insured salaries: 7 
• the force of pension indexation: ^ 
• the (age-specific) forces of mortality, invalidity and other decrements: /4, Mío 

and so on. 

In addition, the force of inflation is denoted by 6. 
The parameter 7 refers to the instantaneous rate at which the general level of 

salaries is growing. This is on top of the progression of individual salaries due to 
age/seniority, called the salary scale. 

There are certain relationships which should hold between these factors. 
Barring exceptional circumstances (for example, during major economic transi- 
tion) the rate of salary escalation should ideally be expected to exceed the rate of 
inflation, the difference representing the gain in productivity. Pension indexa- 
tion should be expected to at least maintain the purchasing power of pensions 
(price indexation) but might even maintain the standard of living of pensioners 
on a par with that of active insured persons (wage indexation). Symbolically, 
7 > /3 > 0. 

10 
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Further, in the long run, the rate of interest should be expected to exceed the 
sum of the rate of growth of the insured population and the rate of salary esca- 
lation. This relationship has particular economic significance (Aaron, 1966). It 
is therefore assumed that 8 > p + ^. 

Another factor which is relevant to social security pension schemes is the 
average "density of contributions", which indicates the proportion of the poten- 
tial time that members in the active age range are effectively in contributory ser- 
vice. For the present purposes this factor is assumed uniformly at 100 per cent; 
the effect of alternative density assumptions is considered in Chapter 3. 

If it is assumed, without loss of generality, that the number of new entrants 
in the interval (0, dt) is dt, then the number of new entrants in the interval 
(í, í + dt) would be ept dt. Similarly, if the general level of salaries at the 
outset of the scheme is taken as one monetary unit, the level of salaries at 
time t would be e7'. A unit pension would grow to e^' in t years. 

1.3    THE ACTIVE POPULATION AND RETIRED POPULATION 
FUNCTIONS 

For the theoretical development, time is regarded as a continuous variable with 
one year as the unit. The two key functions which describe the demographic 
development of a retirement pension scheme are: 

• the active population function A{t); and 
• the retired population function R{i). 

Both are assumed to be continuous, differentiable functions. 
Strictly speaking, these functions should be regarded as stochastic. The 

demographic projections established on the basis of the assumed parameters 
in fact represent average or expected values of A{t) and R{t). The actual 
values which would be realized are governed by the respective probability dis- 
tributions and are therefore uncertain. The classical actuarial approach based 
on expected values - the so-called "deterministic" approach - will be followed 
in this book, but the underlying stochastic nature of the functions should be 
appreciated. 

Consider a pension scheme which operates without any fundamental 
changes, such as a significant modification of the benefit provisions or an appre- 
ciable expansion of its scope of coverage, except for a steady now of new 
entrants (at force of growth p). It is also assumed, as is generally the case, 
that persons already over retirement age at the outset of the scheme are not 
entitled to any benefit. 

The following development assumes a fixed entry age for new entrants - say 
b - and a fixed retirement age - say r - but the same reasoning can be applied to 
any other combination of entry and retirement ages, so that the results estab- 
lished below are of more general validity. 
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A Lexis diagram (Bowers et al, 1986, p. 511; Daykin et al., 1994, p. 442) is 
useful to visualize the components of a pension scheme, as well as the process of 
its evolution (see figure 1 - page 107 - of Appendix 2). Time is shown along the 
horizontal axis and age along the vertical; the point (x,y) represents persons 
aged y at time x. The diagram relates to persons who enter the scheme at age 
b (=20) and retire at age r (=65), u> (=100) being the limit of life. Then each diag- 
onal, such as ABE, represents a cohort of members and traces it from entry 
through retirement up to its eventual disappearance. Each vertical line, such 
as ET, represents persons living at the same time, either as active persons or 
as retired persons. Certain zones have particular significance; the triangle 
ABC represents the future lifetime which will be spent in active participation 
in the scheme by the initial population, while the parallelogram BCDE depicts 
the future lifetime which will be spent as pensioners by the same group. The 
open-ended areas to the right of AB and BE represent the corresponding life- 
times of future entrants. 

Assuming that those over the retirement age at the outset are excluded, the 
number of retirees in a new pension scheme will start from zero and increase 
steadily for several years as members keep retiring and deaths from among 
the retired do not offset the new additions to the pension roll. Eventually, 
when the entire initial population has disappeared, the rate of increase will 
reduce and settle down to a steady rate. This result can be demonstrated as 
follows for those entering at the fixed age b. In the Lexis diagram (figure 1), if 
FJ = a years, the number of pensioners at S would be epa times the number 
at R (under the assumption of the constancy, over time, of the rates of 
decrement), and this will also be the case for any other pair of points i?' and 
S' on the same verticals. Thus when the retired population consists only of 
survivors of new entrants, it would grow at the instantaneous rate p; the same 
result would also apply to the active population. At that stage, the force of 
growth of the total insured population would become identical to the force of 
growth of new entrants. 

The ratio of the number of pensioners to the active population - referred to 
as the aged dependency ratio - will, typically, display a similar growth trend; it 
will increase from zero, initially rather rapidly but then more slowly until it 
reaches a constant level. At that stage, say t = u>i , the scheme is said to have 
attained demographic maturity. 

The characteristics of the functions R(t) and A(t) can be symbolically 
expressed as follows: 

R'{t) > 0 (1.1a) 

m>m       ('<Wl) (ub) 

¿it) = A'jt) 
m   m 

12 

= P       it>ui) (l-lc) 



The financing of social security pensions 

1.4    THE EXPENDITURE AND INSURED SALARY FUNCTIONS 

The two key functions which characterize the financial development of a 
pension scheme are: 

• the expenditure function B{t); and 
• the insured salary function S{i). 

To begin with, B{t) is regarded as relating to benefit expenditure only. Both 
functions are assumed to be continuous, diflerentiable functions. The total ben- 
efit expenditure and the total insured salary bill in the interval (z, z + dz) will 
then be given by B{z) dz and S{z) dz. 

As in the case of the demographic functions A{t) and R{t), the functions B{t) 
and S{t) are also stochastic in nature and the projected values represent the 
expected values of these functions. To take into account the variability of 
these functions about their averages would require recourse to risk theory, 
which is yet to be widely applied in the area of pension financing (see section 
3.12 of Chapter 3). The approach in this book is based on the classical "deter- 
ministic" approach, but the underlying stochastic nature of the functions should 
be borne in mind. 

The term "replacement rate" refers to the percentage which the initial pen- 
sion amount bears to the salary basis of the award, for example, the salary of the 
insured person at retirement. The "pension amount", at any subsequent time, 
refers to the monetary amount of the pension, taking into account indexation 
of the pension since its award. 

A typical pattern of growth ofB{t) and S(t) is described below. The trend of 
the expenditure function B{t) will, in the first instance, depend on the trend of 
the retired population described in section 1.3, above. In addition, it will be 
influenced by the average amount of the pensions in payment. In this regard, 
an important distinction is between the case where the initially insured popula- 
tion receives special credits to compensate for the late start of the scheme - for 
example, full recognition of periods of past service - and that where no such 
credits are awarded. 

In the latter case the replacement rate of new awardees will increase steadily 
until retirements begin to take place after a full insurance career; consequently, 
the average replacement rate of all current pensions will also increase, although 
at a steadily decreasing pace, until it reaches a constant level when all current 
pensioners are composed of persons who have retired after a full insurance 
career. In contrast, if the past service periods of the initial population are 
fully recognized, the replacement rate will be practically constant from the 
outset. Thus, the extent of past service credits will have a profound influence 
on the trend of B{t) until the time when the initial population completely dis- 
appears. 

In either case, B{t) will increase, from zero at the outset, but the rate of 
increase will eventually slow down and reach a steady pace {= p + 7), being 
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the force of growth of the retired population plus that of the average pension 
amount. That the average pension amount grows at force 7 can be demon- 
strated with reference to the Lexis diagram (figure 1). Considering those enter- 
ing at the fixed age b, the average pension amount at S would be e7'7 times that at 
R, reñecting the increase in the salary at retirement from G to K; this will also be 
the case for any other pair i?', S1 on the same verticals. Hence the overall average 
pension amount grows at the instantaneous rate 7. 

Thus, while the absolute value of B{i) will depend on the rate of pension 
indexation, ¡3, the eventual growth trend of B{t) is not affected by it. For 
although each individual pension amount grows at the rate /?, the average 
amount of all current pensions grows at 7, due to what is known as the replace- 
ment effect; pensioners at every age are continuously replaced by others with 
correspondingly higher pension amounts, being based on a final salary growing 
with force 7. 

The ratio B{t)/S{i) will, typically, display a similar trend, growing from zero 
to eventually reach a constant level at the point in time, say í = W2 > when the 
scheme attains what may be termed financial maturity. It will be evident that 
demographic maturity will generally precede financial maturity and that the 
more generous the past service credits to the initial population, the earlier the 
attainment of financial maturity. This is illustrated in figure 2 (page 107), 
which is based on the hypothetical pension scheme developed in Appendix 2. 

Apart from the characteristics ofB{t), as already described, the relationship 
between B{t) and S(t) is particularly important for the discussion of financial 
systems. Symbolically, 

B'it) > 0 (1.2a) 

S'U)     S'(t) , , „ „,, 
> -?7T (i<w2) (1.2b) 

Bit)      S{t) 

¿(t) = ${t) 
B{t)      Sit) = /9 + 7       it>U2) (l-2c) 

Up to this point the administration expenses of operating the scheme 
have not been mentioned. If the operating expenses are financed indepen- 
dently, for example met directly out of the government budget, they are 
clearly not relevant. Where this is not the case, these expenses will need to 
be considered. 

In the initial stages of a new pension scheme administration expenditure 
may predominate, but as the scheme matures, its importance relative to the 
expenditure on benefits will fall considerably. Administrative expenditure, in 
the long run, can be regarded as roughly proportional to benefit expenditure 
or, alternatively, as approximately linearly related to both benefit expenditure 
and insured salaries. In either case, the total expenditure function will bear a 
relationship, similar to that of the benefit expenditure function, to the insured 
salary function. Thus, the characteristics indicated in (1.2) can be assumed to 
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hold even if B{t) is defined so as to include administration expenditure. This is 
assumed to be the case hereafter. 

1.5    THE THEORETICAL BASIS OF FINANCIAL SYSTEMS 

Social security schemes, which are sponsored by national governments, are 
assumed to be of infinite duration, that is, it is taken for granted that there will 
be a regular now of new entrants indefinitely into the future. Because of this, 
financial systems for social security pension schemes are based on the so-called 
open fund approach, which considers the initial population and future entrants 
as a single group for this purpose. Any financial system essentially aims at achiev- 
ing an equilibrium between income and outgo of the scheme - without necessarily 
equating contributions to current expenditure, which is only one way of achieving 
the equilibrium. In fact, an important consequence of the maturing process of a 
pension scheme, described in section 1.4 above, is that there are, in theory, an infi- 
nity of financial systems which may be applied to the scheme. 

For the discussion of financial systems, two additional functions are now 
introduced: 

• the contribution rate function C{t), which characterizes the financial system; 
and 

• the reserve function V{t), which represents the excess of inñow over outflow, 
accumulated with interest at force 6. 

These functions are connected to the functions B{t) and S{t) by the fundamental 
differential equation (Zelenka, 1958, p. 369): 

dV{t) = V{t)6dt + C{t)S{t) dt - B{t) dt (1.3) 

In other words, the change in the reserve in any small interval is equal to the 
investment income on the reserve in the interval plus the excess of contribution 
income over benefit expenditure in the same interval. 

By integrating the above equation over the interval (n,w), the following 
relationship is obtained between the values of the reserve function ai t = n 
and t = m: 

V{m)e-àm = V{ri)e-6n + [C(í)5(í)-5(í)]e""í/í (1.4) 

The expression for V{m) is then obtained as 
cm 

V{m) = Vin) es{m-n) +     [C{t)Sit) - B{t)] e^"^ dt (1.5) 
J« 

In particular, putting n = 0 and taking F(0) = 0, the following retrospective 
expression for V{m) is obtained: 

Vim) = eSm     [C{t)S{t) - B{t)] e'1' dt (1.6) 
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An equation of equilibrium can be written for the entire duration of a pension 
scheme. The equivalence of receipts and payments, taking into account the time 
value of money, can be expressed by equating, at the outset of the scheme, the 
present value of the future contribution stream to the present value of future 
expenditures: 

C{t)S{t)e~Stdt = B{t)e-6tdt (1.7) 

assuming that the two integrals converge - which will be the case if (1.2) holds 
and a > p + 7. The above equation is the fundamental equation of equilibrium 
of a new pension scheme. It implies that 

fm foo 

[C{t)S{t) - B{t)] e'6' dt =      [B{t) - C{t)S{t)] e'6' dt (1.8) 
Jo Jm 

Substituting in expression (1.6), the îoWowmg prospective expression is obtained 
for the reserve function: 

V{m) = eSm     [B{t) - C{t)S{t)] e'6' dt (1.9) 
Jm 

If a view is taken, at the outset, of the entire lifetime of the scheme, any contri- 
bution function C{t) which satisfies the fundamental equation of equilibrium 
(1.7) constitutes a theoretically possible financial system for a new pension 
scheme, and leads to the corresponding reserve function V{m) given by (1.6) 
or (1.9). However, practical expediency makes it necessary to impose a condi- 
tion on each of C(i) and V{t). Negative values of C{t) - implying that the 
scheme is reimbursing the contributing parties - or negative values of V{t) - 
implying that the scheme is borrowing to pay current benefits - will need to 
be excluded. Symbolically, it is necessary that C(i) > 0 and V{t) > 0 for all 
values of t. The imposition of these and other conditions on C{i) and/or V{i) 
leads to various specific financial systems. 

1.6    THE PAY-AS-YOU-GO FINANCIAL SYSTEM 

Theoretically, the pay-as-you-go (PAYG) financial system can be defined by the 
condition V{t) = 0 for all values of t. From the fundamental differential equa- 
tion (1.3), it can then be deduced that 

cw=f[| (i.io) 
With reference to the Lexis diagram (figure 1), it will be seen that the PAYG system 
achieves financial equilibrium along vertical lines such as ET, with the active per- 
sons bearing the cost of benefits to the pensioners living at the same time. 

In practice the system cannot operate on a continuous basis; it will have to be 
defined with reference to a finite interval of time. If a year is taken as the interval, 
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the system is termed the annual PAYG or annual assessment system. The condi- 
tion on the reserve would then be that V{t) = 0 for integral values of /. In equa- 
tion (1.4), putting m = n+l and V{n) = V{n + 1) = 0, the level contribution 
rate over the (n + l)th year of operation of the scheme is given by 

PAYO      Ëllm^i nin 

If contribution inflow and benefit outflow are assumed to be uniformly distrib- 
uted over the year, the contribution rate can be expressed as 

PAYGn+1=
J"+1^7 (1.12) 
srls{t)dt 

However, inflow of cash within the year may not exactly match outgo. More- 
over, allowance will need to be made for unexpected variations from the 
projected values of the contribution income or the benefit expenditure over 
the year. It is therefore the practice to add a small margin to the calculated 
contribution rate in order to build up a contingency reserve to sustain cash 
now. 

1.7    THE GENERAL AVERAGE PREMIUM SYSTEM AND ITS 
DERIVATIVES 

The general average premium (GAP) system is based on the concept of a con- 
stant contribution rate applicable throughout the subsequent lifetime of the 
pension scheme. Taking the view at t = m and putting C{t) = C (a constant) 
in (1.9), the following expression is obtained for the general average premium 
for the interval {m, oo): 

(•Bit)e-Stdt-V{m)e-Sm 

&Sit)e-S'dt [iAi) 

More particularly, if the view is taken at the outset of the scheme, the general 
average premium - indicated by GAP - will be given by 

GAP=£m£^ (114) 

The subsequent discussion is based on the GAP defined by equation (1.14). 
Let the functions B(t) and S{t) be partitioned as follows: 

B{t) = Bl{t) + B2{t);        5(1) = S\{t) = S2(t) 

where Bl{t) and Sl{t) relate to the initial population and B2{t) and S2{t) relate 
to future entrants. 
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An average premium API for the initial population and an average premium 
AP2 for new entrants can be determined as follows: 

^Bl{t)e-S'dt 
APi^::^: a.is) 

^-^Sltfe-t'dt (L16) 

The GAP can then be expressed as follows: 

r A P _ AP1 £ SI it) e-St dt + AP2 JQ
00
 S2{t) e^ dt 

ClAP- ^S{t)e^dt (L17) 

This shows that the GAP can be regarded as a weighted average of API and 
AP2. 

In the Lexis diagram (figure 1), API is the average premium paid by the 
active lives in triangle ABC to support the benefits of the pensioners in the 
parallelogram BCDE, while AP2 is the average premium payable by those in 
the open-ended zone to the right of AB to support the cost of pensions to 
those in the open-ended zone to the right of BE. The GAP can be interpreted 
in a similar way. 

The average premium for the initial population can generally be expected 
to be higher than that for new entrants, owing to the effect of past service 
credits. Even if no such credits are awarded, this will be the case unless 
the pension formula is scaled somewhat more than proportionately to the 
duration of contributory service, which would be unusual, especially in a 
social security pension scheme. The following inequality relationship will 
therefore hold: 

AP1>GAP>AP2 (1.18) 

To facilitate the discussion of "full funding" (see section 1.13, below) and to 
establish a link with financial systems for occupational pension schemes - to 
be discussed in Chapter 2 - it is instructive to consider a hypothetical financial 
system where the initial population pays its own average premium (API), while 
new entrants pay their average premium (AP2). This is equivalent to a system 
where the contribution rate function C{t) is the weighted average of API and 
AP2, the weights being the respective insured salary functions, at time t, of 
the initial population and the new entrants. For the purpose of identification 
this system will be called the "autonomous funding system" (AFS), although 
this is not standard terminology. The function C{t) will start at API and will 
gradually reduce to AP2 when the whole initial population has retired. The 
contribution rate under this system is therefore initially higher than the GAP, 
but eventually lower than the GAP. This means that a higher reserve will be 
generated than under the GAP. 
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1.8    THE TERMINAL FUNDING SYSTEM 

Among the several intermediate financial systems, between the PAYG and GAP 
systems, the terminal funding system deserves special mention. This financial 
system is usually applied to pension benefits provided under employment 
injury insurance schemes. It has occasionally been applied to social security 
pensions. This system has sometimes been referred to as the "assessment of 
constituent capitals" system, in other words, full pre-funding at the time of 
award. 

Let Ka{t) dt represent the capitalized value of the pensions awarded in the 
interval {t,t + di). Then the present value of future benefit expenditures can 
also be expressed in terms of the function Ka{i), as follows: 

("OO poo 

B{t)e-6'dt=      Ka{t)e-S'dt (1.19) 
Jo Jo 

This can be explained by reference to the Lexis diagram (figure 1). Thus, 
pensions paid along the line BE are discounted in two steps; first to the point 
B and then to the point C. The left and right hand sides of equation (1.19) 
are thus two different ways of discounting future pension expenditures. 

The fundamental equation of equilibrium (1.7) can therefore be expressed as 
eoo poo 

C(t)Sit)e-s'dt=\   Ka{t)e-6tdt (1.20) 
Jo Jo 

An obvious solution to the above equation, denoted by TFS(0, is 

TFS(i)=^ (1.21) 

This yields the financial system of terminal funding, so called because each 
pension is capitalized at the time it is awarded. With reference again to the Lexis 
diagram (figure 1), it will be seen that the terminal funding system achieves 
equilibrium over lines such as ACD, the active lives on AC bearing the cost 
of benefits to the pensioners on CD. 

If the initial population does not receive past service credits, Ka{i) will 
increase steeply, from zero at the outset, up to the attainment of demographic 
maturity, after which it will settle down to the steady growth rate of p + 7. 
TFS(0 will exhibit a similar trend, reaching a constant level at the onset of 
demographic maturity. If the initial population benefits from past service 
credits, the initial growth trend will be moderated. If past service is fully 
credited, TFS(i) may not vary appreciably with t, and the system will therefore 
tend to the GAP system. 

The reserve V{n), representing the capitalized value of current pensions, is 
given by 

V{n) = é in [Ka[i) - B{t)]e-Ót dt (1.22) 
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In practice, the terminal funding system will not operate on a continuous 
basis, but will be applied over finite time intervals (for example, annual periods). 
It is hereafter denoted by the acronym TFS. 

1.9 SYSTEMS BASED ON SUCCESSIVE CONTROL PERIODS 

A whole series of intermediate financial systems, between the PAYG and GAP 
systems, can be generated by dividing the time span of a pension scheme into 
successive intervals of limited duration and determining a level contribution 
rate for each interval such that the reserve function V{t) satisfies a given 
condition over the interval. For example, the period up to financial maturity 
(0,0)2) may be divided into h intervals - not necessarily equal - followed by a 
final interval (o^, 00). 

Let («, m) denote any one of these intervals. Equation (1.4) can be regarded 
as the equation of equilibrium for this interval. Moreover, the expression for the 
reserve function at any intermediate time point u{n <u <m)- following (1.5)- 
will be 

V{u) = Vin) e6{u-"'> + fVwSW " Sit)] e6^^ dt (1.23) 
Jn 

Subject to the basic conditions C(i) > 0 and F(i) > 0, other conditions 
could be imposed on C(i) or F(M). For example, if F(«) = F(m) = 0, the finan- 
cial system is that of assessment over several years at a time rather than yearly, 
as in the annual PAYG system. A reserve would build up during each interval 
but would reduce to zero at the end of the interval. The level contribution rate 
(denoted by C) for the interval will then be given by 

¡:Sit)e^dt (L24j 

Another variant specifies the "reserve ratio" a.t t — m (Hirose, 1996). This 
ratio is defined as 

K = W) (1-25) 

If the required value of the reserve ratio is KQ > substituting for K(m) in (1.4) and 
simplifying, the following expression is obtained for the level contribution rate: 

^Bim) e-&m + ¡I Bit) e~6t dt - Vin) e^ 
¡:sit) 

More stringently, a minimum reserve ratio K0 might be required throughout 
the interval («, m). In this case, the level contribution rate is the maximum of 
those resulting from the application of the above formula for each sub-interval 
in,u), n < u < m - in practice, for integral values of u. 
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A further variant specifies the "balance ratio" at ? = m (ibid.). This ratio is 
defined as 

m-csjt) 
X-      6V{t) (1-27) 

This ratio indicates the extent to which the interest on the reserve, or the reserve 
itself, is used, on top of current contributions, for balancing current expendi- 
ture. If A < 0, even the interest income is not required for this purpose; if 
0 < A < 1, a part of the interest income is used; and if A > 1, in addition to 
the interest, recourse is had to the reserve itself. If the required balance ratio 
at t = mis AQ, substitution in (1.4) yields, after simplification, 

_  B{m) e-Sm + S\0 S„mBit) e'6t dt - S\0 V{n) e-
fa 

SWe-^ + ÔXo^Stfe-t'dt {      ' 

Again, more stringently, AQ might be specified as a maximum for the balance 
ratio for the whole interval (n,m). The level contribution rate will then be the 
maximum of those resulting from the application of the above formula for 
each sub-interval {n,u),n <u <m. 

The case where A = 1 at t = m (with A < 1 for n < / < w) is of particular 
interest. This signifies that the reserve grows throughout the interval {n,m) 
and attains a local maximum at t = m. This corresponds to the so-called 
"scaled premium" system, which was designed by ILO actuaries and widely 
applied, particularly in developing countries. This is treated in detail in section 
1.10, below. 

A general formula connecting the level contribution rate in the final interval 
{w2,oo), denoted by TT, with the expenditure, salary and reserve functions at 
t = u)2 can be derived as follows: 

The equation of equilibrium at í = W2 can be written as 

F(W2) + TT S{üj1+z)e'Szdz = 
0 

JB(w2 + z)e-fe¿fe (1.29) 

But S{IJJ2 + z) = ${(¿2) e^+7'z, with a similar expression for 5(^2 + z), due to 
the status of financial maturity beyond £ = o^. 

Substituting and simplifying, the following result is obtained, subject to 
6> p + y. 

V{u2){S - p - 7) = B{UJ2) - 7rS(a;2) (1.30) 

1.10    THE SCALED PREMIUM SYSTEM 

The scaled premium system can be regarded as a particular case of the systems 
based on successive control periods. However, this system is treated indepen- 
dently in this section. 

In its original formulation (Zelenka, 1958) this system was conceived as fol- 
lows: a level contribution rate which would balance income and expenditure 
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over a limited initial period of years (0,«i) - called the first period of equi- 
librium - is determined, but is actually applied over a shorter period (O,^) 
during which the reserve grows continuously and reaches a local maximum at 
í = «i. A higher, level contribution rate is then determined for a second 
period of equilibrium {n\, ttj), under the condition F(«2) = ^(«i ). but is applied 
over a shorter period (n'i,^) during which the reserve grows and reaches 
another local maximum at í = n^, and so on. 

The term "scaled premium system" has been defined more generally, to indi- 
cate one characterized by steadily increasing level contribution rates in succes- 
sive control periods and a non-decreasing reserve fund (Thullen, 1973, p.V-27). 
The specific variant, under which the reserve attains a local maximum at the end 
of each period, has been developed mathematically (Thullen, 1964), enabling 
the direct choice of the intervals (O,^), {n[, n'j), and so on, and the determina- 
tion of the respective level contribution rates. This variant is discussed below. 

Consider any one of the intervals {n,m). Let 7r(H, m) represent the level 
contribution rate in this interval. Assuming that the reserve reaches a local 
maximum at t = m, V'{m) = 0. Substituting in the fundamental differential 
equation (1.3), the following expression for the terminal reserve is obtained: 

v{m) = B{m)-AnMS{m) ^ 

Substituting for V{m) in the general expression for the reserve (1.4) and 
simplifying, the following expression is obtained for the level premium for the 
interval (n,m): 

B{m) e-6m + 6 J„m B{z) e'fa dz - ÔV{n) e" ' 

S{m)e-6m+6^ S{z) e'Sz dz 

It can be shown that the conditions B!{t) > 0 and that B{t)/S{t) is a non- 
decreasing function are sufficient to ensure a positive non-decreasing reserve 
in («, m), as required. In addition, under these conditions, the level premium 
calculated according to formula (1.32) will be positive and exceed the level 
premium calculated according to the same formula in the preceding interval 
(see Appendix 5). 

Suppose the infinite time span of the pension scheme is divided into h + l 
intervals, the last corresponding to the period of financial maturity (a^, oo). Start- 
ing from F(0) = 0, the repeated application of the above formulae alternately 
will yield the scaled premium contribution rates 7r(l) ...^(h) for each of the 
first h intervals and the corresponding terminal reserves. Tr{h +1) can then be 
expressed in terms of n{h) and the ultimate PAYG contribution rate as follows: 

Applying the formula (1.31) to the hth interval, 
¥{(¿2)8 = B{u2) - 7r(/!)S(w2) 

On the other hand, because of (1.30), 

V{w2)iS - p - 7) = B{UJ2) - n{h + 1)8^2) 
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Eliminating V{u>2), the following expression is obtained for 7r(/z + 1): 

P + Y •ïï{h + l) =n{h) 1     P + 7 + PAYG* (1.33) 

where PAYG* denotes the pay-as-you-go premium in the financially mature 
situation. 

To complete this section, mention is made of another variant of the scaled 
premium system, where the condition on the terminal reserve is changed as 
follows: the force of growth of the reserve at the end of each interval is equal 
to the force of growth in the financially mature situation, i.e. 

^'W = (P + 7)^(0 at the end of each interval. 

In this case also the expressions for the contribution rates and reserves -(1.31) 
and (1.32) - are valid except that S should be replaced hy 6 — p — j wherever it 
occurs. Additionally, 7r(/z + 1) = 7r(/z). The two variants of the scaled premium 
system are hereafter identified by the acronyms SCP1 and SCP2. 

1.11    ASSESSMENT AND COMPARISON OF THE FINANCIAL 
SYSTEMS 

The problem of financing a social security pension scheme can be regarded as 
essentially that of fixing the initial and future contribution rates at levels consid- 
ered affordable by the respective contributing parties while, at the same time, 
tailoring the accumulation of the reserve to the projected investment needs 
and absorptive capacity of the economy. Further, for legislative or administra- 
tive convenience, the revision of the contribution rate should not be too 
frequent. The various systems are assessed below from this perspective. 

From the point of view of the funding level, the PAYG system is at the lower 
extremity of the range of the practicable financial systems for a pension scheme. 
It involves an almost continuous increase in the contribution rate. Moreover, 
the contribution rate will reach a relatively very high level when the scheme 
attains financial maturity. Finally, practically no reserve will accumulate. 

The GAP system has the advantage of a perpetually level contribution rate, 
but this means that a relatively high rate will need to be applied right at the 
outset. From the point of funding level, it is customary to regard the GAP 
system as the upper extreme of financial systems applicable to social security 
pension schemes. Thus the system will lead to the accumulation of a substantial 
reserve. 

The terminal funding system (TFS) has the property that the reserve is 
adequate to cover the future cost of all pensions already awarded, although 
this may not be a requirement for social security pension financing. 

The system of successive control periods provides a balance between 
the contrary characteristics of the PAYG and the GAP systems. Thus the 
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contribution rate can be maintained level for limited periods of time, so that 
the revision of the contribution rate is required only at intervals. Moreover, 
the accumulation of the reserve would be moderate. Considerable flexibility is 
available in the choice of the intervals and in controlling the levels of the 
contribution rates, as well as of the reserve accumulation. 

The scaled premium system provides for a non-decreasing reserve, so that in 
theory recourse is had only to the investment income on the reserve, but not the 
reserve itself. It would therefore be possible to invest the reserve in assets which 
need never be liquidated. 

1.12    ILLUSTRATION OF THE FINANCIAL SYSTEMS 

Figures 3 to 8 of Appendix 2 (pages 108 to 110) illustrate the contribution rates 
and reserves for the various financing systems discussed above. The reserve is 
shown as a multiple of the insured salary bill rather than in monetary terms, 
to facilitate inter-system comparisons. The PAYG and GAP systems, which 
are convenient reference points, are included in all the figures. Figures 3 to 6 
illustrate the TFS and the "autonomous funding system" (AFS), including 
the sensitivity of these systems to past service credits. Figures 7 and 8 relate 
to the two variants of the scaled premium system. These figures are based on 
the hypothetical pension scheme developed in Appendix 2. 

The first comparison that can be made is between the different financial sys- 
tems, for a given level of past service credits. As regards contribution rates, it is 
seen that as a rule, the lower the initial rates, the higher the ultimate rates and 
vice versa. Under all systems - except the AFS - the initial contribution rates are 
below the GAP level, but ultimately above the GAP level. Under PAYG the 
initial rates are the lowest, but the ultimate rates are the highest. The TFS 
and the scaled premium system (SCP) are intermediate between PAYG and 
GAP, at different levels. The AFS is the exception, with the initial rates 
higher than, but the ultimate rates lower than, the GAP. 

As regards the accumulation of the reserve, the lower the ultimate contribu- 
tion rate, the higher the level of the reserve. Thus, the AFS produces the highest 
ultimate accumulation, followed by the GAP. The other systems produce lower 
ultimate reserves, in inverse order to their respective ultimate contribution rates. 

The effect of past service credits is particularly significant with regard to the 
relative levels of the AFS, GAP and TFS. The AFS approaches the GAP system 
when there are no credits but diverges from it substantially if past service is fully 
credited. In contrast, the TFS approaches the GAP under full past service 
crediting - in this illustrative example the two systems are identical - but 
diverges significantly from it when past service is not credited. 

These differential trends of contribution rates and reserves imply different 
levels of inter-generational transfer, within the framework of the pension 
scheme per se. The PAYG system has the highest level of such transfer. The 
AFS can be regarded as the system with zero transfer from new entrants 
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to the initial population. All other systems involve some measure of inter- 
generational transfer, including the GAP system. It will also be noted that, 
for any given system, the more generous the past service credits, the larger 
the extent of inter-generational transfer. 

An instructive comparison is between the reserve of any given system and 
the reserve of the TFS. As seen before, the TFS reserve equals the capitalized 
value of all current pensions. When the system reserve exceeds the TFS reserve, 
the balance represents the reserve for active persons, that is, it is a security for 
the accruing benefit rights of those who are not yet retired. Although this point 
is more relevant to occupational pension schemes than to social security pension 
schemes, it may be noted that several of the financial systems applied in social 
security may not carry a sufficient reserve even to cover the capital value of 
current pensions. The GAP system reserve generally provides some cover in 
respect of active persons, although this may be insignificant when full past 
service credits are awarded to initial entrants. 

1.13    THE CONCEPT OF FULL FUNDING IN RELATION TO 
THE GAP SYSTEM 

The term "full funding" is increasingly being used in the context of pension 
financing. However, it is important to note that the GAP system, which is at 
the upper end of the range of financial systems applied in the area of social 
security pension financing, is in general not fully funded. 

A pension scheme is said to be fully funded if the accumulated reserve at 
least equals the value of all accrued benefits, which includes, in addition to 
the capital value of current pensions, the value of benefits earned to date by 
active members (Tilove, 1976, pp. 149, 152). In other words, should the 
scheme be wound up, the reserve on hand, together with future interest earn- 
ings, would suiSce to pay all current pensions until their extinction and also 
to pay all accrued pensions of active members, whenever due under the rules 
of the scheme and for the specified durations. It should, however, be noted 
that when a pension scheme is described as being "on full funding", it does 
not mean that it has achieved a fully funded position; it means that it is on a 
schedule intended to achieve that goal (ibid., p. 152). 

There are, of course, some technical difficulties in defining accrued pensions; 
for example, whether anticipated future increase in the insured salary should be 
taken into account and whether indexation of pensions after award should be 
allowed for. This problem apart, the question which arises is whether, on 
some definition of accrued benefits, the GAP system is a full funding system. 

To answer this question, it is recalled that when past service is fully credited, 
the GAP system approaches the TFS, with the result that the reserve is practi- 
cally equal to the capital value of current pensions. This means that the reserve 
available for active members will be unlikely to cover the value of their accrued 
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benefits on any definition, so that the GAP system will not lead to a fully funded 
position. However, it was seen that when there are no past service credits, the 
GAP system approaches the AFS. The discussion in Chapter 2 will show that 
the AFS does lead to a fully funded position when the initially insured popula- 
tion has fully retired. 

Thus, generally speaking, the GAP system cannot be characterized as a full 
funding system, although it may approximate to such a system, for example, 
when no past service credits are given to the initial population. Therefore, the 
label "partially funded" will apply practically without exception to all financial 
systems employed in the area of social security pension financing. 
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THE FUNDING OF OCCUPATIONAL 
PENSIONS 2 

2.1     INTRODUCTION 

This chapter is concerned with occupational pension schemes covering private 
sector employees, which are sponsored by individual employers or set up through 
negotiations by trade unions with several employers (multi-employer plans). The 
principles discussed are also applicable to public sector schemes which are 
funded. The subject will not be treated in detail; the purpose is only to indicate 
the principal differences between occupational and social security pension 
schemes in the approach to financing. As in Chapter 1, the discussion will be 
limited to retirement pensions based on a formula which is strictly proportional 
to the period of contributory service - specifically, accruing at 1 per cent per year 
- and to the terminal salary (at retirement) of the member. 

The basic characteristics of occupational pension schemes - at least as far as 
retirement benefits are concerned - are not very different from those of social 
security pension schemes, and the discussion in sections 1.3 and 1.4 can be 
taken as being equally valid. There are, however, a series of special considera- 
tions which lead, in practice, to the adoption of financial systems which are 
different from those employed in the area of social security pensions. 

It is assumed that the assets of the occupational scheme are separated from the 
assets of the sponsor and held in trust on behalf of the members. This is normally 
considered desirable in order to secure the pension benefits independently of the 
financial health of the sponsor. However, an exception is the "book reserve" 
system practised, for example, in Germany, whereby pension reserves are main- 
tained in the sponsor's balance sheet, so that the pension assets are, in effect, 
invested in the sponsor's business; security for the pensions is provided through 
insolvency insurance which the sponsor is required to take out with a mutual 
insurer, supported by all employers running such book reserved schemes. 

For similar reasons, the PAYG system is generally not considered a feasible 
method of financing an occupational pension scheme. There is the risk that the 
sponsor (the employer) may become insolvent or simply close down the 
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business, in which case all pension rights (both existing and prospective) would 
be lost. Moreover, the employer - who would presumably be the major contri- 
butor to the scheme - is also likely to find it inconvenient, from the budgeting 
point of view, to arrange for outlays which increase continuously over time. 

Here again, an exception is provided by the complementary pension schemes 
in France based on the répartition par points system, which is effectively PAYG. 
However, it should be noted that these schemes are nationwide and compulsory 
in coverage so that the risk is shared across employers and, moreover, are at an 
advanced state of maturity. 

It will be appreciated that the above-mentioned objections to the application 
of the unfunded PAYG system to occupational pensions could also be raised 
against the various partial funding systems discussed in Chapter 1 because, in 
the event of discontinuance of the scheme, the reserve fund available may 
only partly cover the accrued pension rights and further - except for the 
GAP system - the contribution rate will generally have an increasing trend 
over time. Moreover, these systems involve inter-generational transfers, which 
are acceptable in a social security scheme but are not intended in an occupa- 
tional scheme. Even if this concept does not apply to the employer's contribu- 
tions, the accrual accounting principle suggests that the cost of an employee's 
pension should be charged over the period of his or her employment. 

For these reasons, unlike a social security scheme, an occupational pension 
scheme generally aims to achieve financial equilibrium on a "closed fund" basis, 
meaning that only the existing membership is brought into the equation, exclud- 
ing future entrants. In this manner, equilibrium is established independently of 
the recruitment of new entrants. However, provided future entrants are also, as 
a group, in financial equilibrium, the scheme will also be in actuarial balance on 
an "open fund" basis. 

In this chapter, the terms "contributions" and "contribution rate" refer to 
the total financial resources allocated to the scheme, without differentiating 
between the employer's and the employee's shares. In practice, the employee's 
contribution rate is often fixed in the regulations, the employer paying the 
balance of the required total contributions. 

When the PAYG system is excluded, it is customary to use the word "fund- 
ing" instead of "financing", and this terminology is adopted in this chapter. 
Funding methods are also referred to as actuarial cost methods. There is a 
wide variety of actuarial cost methods and the principal methods are briefly 
surveyed below. It must be borne in mind, however, that the choice of 
method in any particular case will be conditioned by the regulatory provisions 
in force. These provisions will generally proscribe underfunding, to ensure the 
security of the pension expectations of the covered employees. On the other 
hand, since pension fund contributions are normally tax exempt, the regulations 
are also likely to disallow or discourage overfunding. 

The actuarial cost methods can be divided into two groups: individual 
methods and aggregate methods. In individual methods the total results are 
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obtained by summing the results for individuals; in aggregate methods they are 
determined on a collective basis. The methods can be further divided into 
accrued benefit methods and entry age methods (Trowbridge and Farr, 1976, 
p. 35; Bowers et al., 1986, pp. 544, 546). Individual methods are discussed in 
sections 2.2 to 2.7 below, and aggregate methods are considered in section 2.8. 

2.2    INDIVIDUAL COST METHODS 

Individual cost methods first address the financial equilibrium of new entrants 
and then consider the adjustments required to achieve the closed-fund equili- 
brium of the initial population. Taking retirement pensions as an example, 
the contributions paid over a new entrant generation's active lifetime should, 
by retirement age, accumulate to the capital value of the pensions of those 
attaining that age. In the Lexis diagram (figure 1) equilibrium would be 
achieved along lines such as ABE, the pensions of those on BE being financed 
by those on AB. 

For simplicity, all new entrants are assumed to enter at a single age b 
and to retire at a single age r. Let K{x) represent the age-related contribution 
rate function and F{x) the reserve function per unit salary bill at entry 
{b <x <r). Both functions are assumed to be continuous and differentiable. 
The equation of equilibrium at entry, per unit salary bill, can be written as 

" | ^K{z) e^->» e-W dz = r^±llsJL e*-b) e-Kr-b)ñr {1A) 
Jé  /¿ Sb 100   /& 5¿ 

where /" represents the service table function and SXÜíQ relative salary scale func- 
tion, both assumed continuous and diiferentiable, and ñr is a continuous life 
annuity payable to retirees, based on force of interest 6 — 13. The parameters 
6, 7 and ¡3 were defined in section 1.2 of Chapter 1. 

The above equation can be simplified and expressed in terms of commuta- 
tion functions as follows (see Appendix 1 and equation (6.4)): 

Df(-6-^K{z)dz = r-^-Da
r
s{6-l)^6-0) (2.2) 

where the superscripts a and p respectively denote functions relating to active 
persons and retirees, the superscript s denotes that the salary scale function sx 

is incorporated and the superscript in parentheses specifies the underlying 
force of interest. 

Assuming that the experience coincides with the initial assumptions, the 
reserve function at age x per unit salary bill at entry can be derived by accumu- 
lating the contributions paid from age b to age x, as follows: 

F[x) = f | -K{z) el{z-b) e6{x-z) dz (2.3) 
J*   4  sb 
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and then simplified and expressed in terms of commutation functions as 
follows: 

F{x) = es{x-b) 
'X jjas{S-j) 

' .,    . K{z) dz (2.4) 

Multiplying both sides by g^^-*' and then differentiating both sides with 
respect to x, 

[F'{X) - 8F{x)] e-**-V = ^^K{x) (2.5) 

This gives the following expression for K(x): 
J-.OSíS-'Y) 

KW = ¿fc) lF'W - ^W ^^ (2-6) 

2.3    ACCRUED BENEFIT COST METHODS 

Accrued benefit cost methods (also known as unit credit funding methods) 
fund in each time interval the portion of the ultimate pension benefit earned 
in that interval. Assuming that the experience coincides with the initial 
assumptions, this will automatically lead to the reserve fund F(x) equal to 
the probable present value of the portion of the ultimate benefit accrued up 
to that age. Of the several possible variants, the following two are selected 
for illustration: 

(a) the accrued pension is based on current service and current salary, with 
allowance for indexation after award: this is referred to as ACC1 in the fol- 
lowing discussion; 

(b) the accrued pension is based on current service and the projected salary at 
retirement, with allowance for indexation after award: this is referred to as 
ACC2. 

Accrued benefit cost method ACC1 

The probable present value at age x of the portion of the retirement pension 
accrued up to that age, per unit salary bill at entry, is given by 

F{x)=w | sfb
e<x~b) e'S{r~x) l^'" (2-7) 

which, after simplification, yields, in terms of commutation functions, 

100 L Jíé nfW 
b 
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Multiplying both sides by e~6^x~b\ diflferentiating both sides with respect to x 
and substituting in (2.6) yields the following expression for K{x): 

K{x) = 
i Df) r    ,    ^ (^ 

100 D* «(«) l + (x-è)   -í + 7 
s* 

af-® (2.9) 

The above expression can be interpreted by considering the contribution amount 
K{x) dx in the interval (x, x + dx) per unit of current salary. The part within the 
square brackets times dx would represent the increase in the pension rate (as a 
percentage of the current salary) in the interval, which has two components: 
the pension rate percentage already accrued - {x — b) - increased in the pro- 
portion {s'x/sx + 7) dx due to the combined effect of the salary scale and salary 
escalation; and the dx percentage earned due to the service in the interval itself. 

Accrued benefit cost method ACC2 

The only difference from ACC1 is that in expression (2.7), sx e7^-*' should be 
replaced by sre'y^~b'. After simplification, the following expression is obtained 
for F{x) in the case of ACC2: 

f(x)=^[e*-J)]^7—T^-« (2.10) w      100 n"^6^^ 

Differentiation with respect to x and substitution in (2.6) gives, after simpli- 
fication, 

K(X)=-L^L'' âf-O) (2.11) 
100 jy^-y) v      ' 

2.4    ENTRY AGE COST METHODS 

Entry age methods (also called projected benefit methods) seek to establish a 
level contribution rate or amount in function of the entry age. In this case 
K{x) = K{b) at all values of x. From the equation of equilibrium - (2.2) 
above - the following expression is obtained: 

K{b) = r-±       Dr âf-m (2.12) 
100  ¡¡Df^-^dz 

which can be expressed as 

*(¿,)=LZÍ^J(*-/') (2.13) v J       100   jy-^-T)   r v       y 

where 
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Assuming that the experience coincides with the initial assumptions, the reserve 
fund function will then be given by 

F(x) = eS{X-b)mib%./Z (2-14) 
L>b 

which can be expressed as 
gas{S~-y) _fias{S-7) 

F{X) = e^-»K{b)    » ;  (2.15) 
1Jb 

This actuarial cost method will be referred to by the acronym ENT. If all 
cohorts enter at the same age b, K{b) will be the average premium for all new 
entrants, that is, the premium AP2 discussed in section 1.7 of Chapter 1. 

Figures 9 and 10 (page 111), based on the hypothetical pension scheme 
developed in Appendix 2, illustrate the working of the three actuarial cost 
methods over the contributory lifetime of a cohort entering at age 20 and 
retiring at age 65. The graphs of the K{x) function in figure 9 show that the 
three methods fund the retirement benefit of the cohort at different paces. 
Figure 10 illustrates the build-up of the reserve fund to the capital value of 
the retirement pension over the contributory lifetime of the cohort; the steepness 
of the curve is in the (descending) order ENT, ACC2, ACC1, reñecting the 
relative paces of funding. 

2.5    THE INITIAL ACCRUED LIABILITY AND ITS DISCHARGE 

After dealing with the problem of the financial equilibrium of new entrants, the 
individual actuarial cost methods consider the adjustments required in order to 
achieve the closed fund financial equilibrium of the initial population. 

The "normal cost", as a function of time, refers to the total contributions 
then payable by the active members based on the age-related contribution 
rate function K{x). These contributions, however, will not suffice to produce 
an equilibrium for the initial population if full past service credits are awarded. 
The initial actuarial deficit arising on this account is termed the "initial accrued 
liability". It can be regarded as the cost of the scheme which will not be covered 
by future "normal cost" contributions, or - if past service is fully credited - as 
the fund which would be on hand had the actuarial cost method always been in 
application (Trowbridge and Farr, 1976, pp. 23-26). 

The usual practice is for the sponsor to discharge the initial accrued liability 
through special payments, on top of the "normal cost" contributions to the 
scheme. Typically, level payments will be spread over a period of years, as 
generally required by legislation, ending in any case before the entire initial 
population has retired. 

Alternatively this liability may be amortized, over the active lifetime of the 
initial insured population, by a fixed percentage of the salary bill, either of the 
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total insured population or of the initial population alone. An extreme method 
of amortizing the initial accrued liability would be to pay only the interest on 
this liability, without ever repaying the capital. It will be noted that when the 
above-mentioned amortization plans are combined with the ENT system, the 
resulting systems will correspond, respectively, to the AFS and GAP systems 
discussed in Chapter 1. 

In the extreme case, where no past service credits are awarded to the initial 
population, the initial accrued liability - defined, in this case, as the cost of 
pensions to be earned in virtue of future service, which will not be covered by 
future normal contributions - may well be negative at certain ages of the initial 
population, depending on the age-wise pace of funding of the specific actuarial 
cost method (see figure 9). Depending possibly also on the age distribution of 
the initial population, this could lead to an overall negative initial accrued 
liability. However, when partial past service credits are awarded leading to an 
overall positive initial accrued liability, it can be dealt with in the same 
manner as described above. 

2.6    COMPARISON OF INDIVIDUAL COST METHODS WITH 
SOCIAL SECURITY FINANCING METHODS 

In order to compare the above actuarial cost methods with the financing 
methods of social security pensions, it is necessary to characterize each 
method by a contribution rate function C(i) and a reserve function V{t) 
depending on time (?). The time-related contribution rate function would 
include two components: 

(a) the "normal cost" contribution rate, which would be a weighted average 
of the age-related contribution rate function K{x), based on the distribu- 
tion of insured salaries by age at time /; and 

(b) the additional contribution rate to amortize the initial accrued liability, 
that is, the instalment due at time t expressed as a percentage of the corre- 
sponding total salary bill. 

As in Chapter 1, for the purpose of the demonstration it is assumed that the 
projection made at the outset of the scheme is realized exactly. Thus, any 
subsequent adjustments for actuarial gains and losses are ignored, although 
in practice there will be departures from projected results and adjustments 
will certainly be required. 

The time-related contribution rate function would obviously be affected by 
the demographic and economic characteristics of the initial population. Figures 
11 and 12 (page 112) relate to the hypothetical pension scheme developed in 
Appendix 2. Initial entrants are assumed to receive full credit in respect of 
pre-scheme service. Since the purpose is to illustrate the funding systems and 
to compare them with the social security financing systems, the actuarial basis 
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and assumptions are identical to those used for the demonstration of the 
social security financing methods in Chapter 1, although in practice the basis 
for an occupational pension scheme may differ from that for a social security 
pension scheme - for example, the basis may incorporate a withdrawal 
decrement which is normally absent in the actuarial basis for a social security 
pension scheme. 

In addition to the accrued benefit (ACCl, ACC2) and entry age (ENT) 
methods, the GAP system is included to serve as a reference point. The demon- 
strated ACCl, ACC2 and ENT cost methods discharge the initial accrued 
liability by level payments spread over the active lifetime of the youngest initial 
entrant. 

It will be seen that the time-related contribution rates are initially well above 
the GAP, in the order ENT, ACC2, ACCl, while eventually they settle down to 
a level well below the GAP, in reverse order. A discontinuity occurs in the 
contribution rate function when the amortization of the initial accrued liability 
ceases. 

As a consequence of the trends in the time-related contribution rates, the 
accumulated reserves of the actuarial cost methods are substantially higher 
than the GAP level, in reverse order to the ultimate levels of the contribution 
rates. 

2.7    ASSESSMENT OF THE INDIVIDUAL ACTUARIAL COST 
METHODS 

Any particular actuarial cost method could be judged on certain criteria (Lee, 
1986, pp. 156-160) including, in particular: 

• stability: how resilient is the "normal cost" contribution rate to changes in 
the age distribution of the active population? 

• durability: how resilient is the "normal cost" contribution rate to a closure of 
the scheme to new entrants? 

• security: how favourably does the time-related reserve fund compare with the 
accrued benefits of the members? 

From figure 9 of Appendix 2, it can be inferred that if the age distribution of the 
active population shifted upwards, the "normal cost" contribution rate would 
be unaffected in the ENT method and slightly affected in the ACC2 method, 
but considerably affected (increased) in the ACCl method. In the event of 
closure of the scheme to new entrants, the effect on ACCl and ACC2 will be 
similar but more intense, while in the ENT system the "normal cost" contribu- 
tion rate will again be unaffected. Thus the "stability" and "durability" ranking 
of the methods is ENT, ACC2, ACCl, in descending order. 

As regards the aspect of "security", because of the way in which they are 
designed, the accrued benefit cost methods will automatically produce, in 
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respect of new entrants, reserves which cover the "accrued benefits" on the 
specific definition. It should be recalled, however, that the ACCl definition of 
accrued benefits is comparatively less generous and this method may, in certain 
circumstances, be regarded as not providing adequate security. As regards the 
entry age methods, figure 10 of Appendix 2 shows that the pace of funding 
under the ENT method is even steeper. This suggests that the ENT method 
should produce, for new entrants, reserves even exceeding accrued benefits 
according to the ACC2 definition. 

The level of "security" provided in respect of new entrants would be assured 
in respect of the initial population only when the initial accrued liability has 
been fully discharged. In other words, at that stage the "unfunded accrued 
liability" would have been eliminated. The scheme would at that time reach 
what may be termed the "fully funded" status. 

2.8    AGGREGATE COST METHODS 

As already mentioned, aggregate cost methods determine the time-related 
contribution rate function on a collective basis. Among the several possible 
variants, the following is selected for illustration. 

In this variant (Trowbridge and Farr, 1976, p. 55: Tilove, 1976, p. 157), the 
time-related contribution rate is that level rate which would ensure the closed- 
fund financial equilibrium of the scheme at that time, taking into account the 
accumulated reserves. Thus, let 

PVB(i) = present value of future benefits of existing active members 
(excluding new entrants beyond that time) and existing pensioners; 

PVS(i) = present value of future salaries of existing active members; 
V{t) = accumulated reserve fund; 
C{t) = time-related contribution rate function. Then, 

PVB(r) - Vjt) 
C{t) =     PVSW (2-16) 

For a new scheme starting with zero reserves, the contribution rate function will 
start at API and reduce smoothly and asymptotically to AP2. This variant of 
the aggregate methods is referred to as AGG. 

As compared to the ENT method, the AGG method has the amortization of 
the initial accrued liability built into the method instead of treating it separately. 
In effect, the initial accrued liability is being funded through decreasing rather 
than level amounts. Once this liability is fully discharged, this method would 
become identical to the ENT method and would be fully funded. 

It will be recalled (see section 1.7 of Chapter 1) that the "autonomous fund- 
ing system" (AFS) achieves the same result as the AGG method, but through a 
different time-related contribution rate function, over the active lifetime of the 
initial population. Eventually, when the initial population is fully retired, the 
AFS becomes identical to ENT and is therefore fully funded at that stage. 
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The AGG method is illustrated in figures 13 and 14 (page 113) of Appendix 2, in 
relation to the AFS and ENT systems. 

Another version of the aggregate cost method, which corresponds to the 
system of successive control periods - see section 1.9 of Chapter 1 - is based 
on forward projections of expenditures and insured salaries, which are estab- 
lished as for social security schemes. The level contribution rate for an interval 
(«, m), computed at / = « taking into account the reserve in hand, would be such 
as to produce a terminal reserve which bears a specified ratio to the projected 
accrued liability at í = m. In this manner, the initial accrued liability could be 
progressively amortized over successive intervals. 

2.9    CONCLUSION 

This chapter has shown that the funding methods applied to occupational 
pension schemes are essentially an extension of the family of financing methods 
applied to social security pension schemes, with the GAP method at the 
boundary between the two sets of methods. 

The occupational pension funding methods aim at attaining the status of full 
funding in a reasonable, finite period of time, whereas this is not an objective of 
the social security financing methods. In other words, occupational pension 
schemes are considerably more pre-funded than social security pension 
schemes. This translates in practice into contrary patterns of time-related 
contribution rates and reserve functions. Social security financing methods 
produce contribution rates which are initially lower than the GAP but 
eventually higher, whereas occupational pension funding methods generate 
contribution rates initially higher than the GAP but eventually lower. As a 
consequence, social security pension schemes generally accumulate lower 
reserves than the GAP system, while occupational pension schemes accumulate 
higher reserves. 
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ADVANCED TOPICS IN SOCIAL 
SECURITY PENSION FINANCING 3 

3.1     INTRODUCTION 

This chapter analyses in further detail the characteristics of social security 
pension schemes and the methods of financing them. The consequences of relax- 
ing the simplifying assumptions made in Chapter 1 are discussed. The effect of 
the determining parameters is illustrated by considering the sensitivity of 
selected premiums to changes in parametric values. Finally, the chapter deals 
with the problem of the indexation of pensions and the constraints arising 
out of the degree of funding. 

3.2 THE PROJECTION AND PRESENT VALUE 
APPROACHES 

There are two actuarial approaches for the analysis of a pension scheme: the 
projection approach and the present value approach. With reference to the 
Lexis diagram (figure 1, page 107), the projection approach concentrates on 
the vertical lines, while the present value approach concentrates on the 
diagonals. Both approaches, however, lead to the same results or conclusions 
if they cover the same zone of the Lexis diagram. 

The analysis in Chapter 1 was based on the projection approach, the 
basic elements being the expenditure function B{t) and the insured salary 
function S{i), introduced in section 1.4. Chapter 2, on the other hand, was 
based on the present value approach - since the actuarial cost methods dis- 
cussed in sections 2.2 to 2.4 achieved equilibrium along the diagonals - but 
the passage in section 2.5 and after to contribution rate and reserve functions 
dependent on time was implicitly based on the equivalence of the two 
approaches. 

In this chapter recourse will be had to either approach, as required, to 
analyse the properties of various financial systems. 
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3.3    EXTENSION OF THE THEORY TO INVALIDITY AND 
SURVIVORS' PENSIONS 

The treatment in Chapter 1 was limited to retirement pensions. Social security 
pension schemes, however, almost invariably cover the risks of invalidity and 
death as well, and provide pensions to invalidity pensioners and to survivors 
(generally, widows/widowers and orphans) of those who die during active 
service or when in receipt of a retirement or invalidity pension. 

Persons involved in a pension scheme can be regarded as constituting 
several distinct sub-populations. In Chapter 1 the sub-populations of active 
insured persons and retired persons were introduced. Invalidity pensioners 
constitute another sub-population which is augmented by new invalids and 
depleted by deaths of existing invalids. The force of the invalidity decrement, 
which will apply to persons in the active age range, like the force of mortal- 
ity, is assumed to be gender and age specific. As in the case of the sub- 
populations of active persons and retirement pensioners, discussed in section 
1.3, the sub-population of invalidity pensioners will, for a new pension 
scheme, under the assumption of the constancy of the determining param- 
eters, also increase steadily from zero and eventually reach maturity. It will 
then have a stable age distribution and a constant force of growth equal to 
that of active persons and retirement pensioners {p). However, the time 
taken to attain this status will be longer. This is because the incremental 
element, constituted by new invalids, will become stable only when the 
active population reaches maturity; the youngest invalid created at that 
time must reach the limit of age before the whole sub-population of invalids 
becomes stable. 

Similar considerations apply to survivors, but the time taken to attain 
maturity will be even longer. In the case of widows, the incremental element, 
constituted by new widows, will become stable only when the three sub-popula- 
tions of active persons, retired persons and invalidity pensioners all become 
stable; the youngest widow created at that time must reach the limit of age 
before the sub-population of widows becomes stable. In the case of orphans, 
the youngest orphan created at the above-mentioned time must reach the 
maximum age limit for the payment of the orphan's pension. 

Thus the inclusion of invalidity and survivors' pensions will not affect the 
basic trend of the expenditure and salary functions discussed in section 1.4 
except that the duration to financial maturity will be correspondingly extended. 
The theory of social security pension financing developed in Chapter 1 for 
retirement pensions therefore applies equally to a comprehensive pension 
scheme providing invalidity and survivors' pensions in addition to retirement 
pensions. 

For demonstration purposes, reference will continue to be made to retire- 
ment pensions only, it being generally understood that the results apply also 
to invalidity and survivors' pensions, unless indicated otherwise. 
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3.4    MULTIPLE ENTRY AND RETIREMENT AGES 

The treatment in Chapter 1 was based on the assumption that all new entrants 
enter the scheme at a single entry age. However, the same arguments apply to 
other entry ages and, provided that the force of growth of the number of new 
entrants (p) is the same at all ages, the sum of the results for the various entry 
ages will display the same characteristic trend. 

Again, in Chapter 1 a uniform retirement age was assumed. However, if 
retirement can take place over a range of ages terminating at a given maximum 
retirement age, provided that the force of retirement at each age is constant over 
time, by analogy with the case of invalidity pensions, it can be deduced that 
retirements occurring over a range of ages will not affect the basic trends and 
theory developed in Chapter 1. 

For demonstration purposes, reference will continue to be made to a single 
entry age b and to a single retirement age r, it being understood that the results 
are valid for multiple entry and retirement ages. 

3.5 EXPRESSIONS FOR NEW ENTRANT FUNCTIONS 

Until a pension scheme reaches financial maturity, its financial development will 
be influenced by the specific demographic and economic characteristics of the 
initially insured population. The further discussion of a pension scheme, parti- 
cularly the analysis of the effect of the determining parameters, is considerably 
simplified in the financially mature situation, when the initial population has 
disappeared from the scene. Expressions are developed in this section for 
various functions relating to new entrants, which apply to the mature situation. 

Functions relating to the cohort entering at time t 

Let {/"}, b < x <r, represent the service table for active persons and {/^}, 
r < x <u>, denote the life table for retired persons, b being the youngest entry 
age, r the highest retirement age and u> the limit of life. 

Consider the new entrants entering at age b and retiring at age r. Let us 
assume, as in section 1.2, that the number of new entrants in the time interval 
(0, dt) is dt and that their salary at entry is one unit. Then the new entrants 
entering in the interval (t, t + di) will number ept dt at entry and their salary 
at entry will be e7' units, where p is the force of growth of new entrants and 7 
is the force of salary escalation. 

The following expressions concern various entities relating to the whole new 
entrant cohort recruited at time t. They are derived from first principles and then 
expressed in terms of commutation functions and annuity functions in which the 
superscripts a and p respectively denote functions relating to active persons and 
retirees, the superscript s indicates that the salary scale function sx is incorporated 
and the superscript in brackets specifies the underlying force of interest. 
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(a)    The probable present value, at entry, of an annuity of one monetary unit 
per year, payable from entry to retirement: 

'J^-M^e^ (3.1) 

(b)    The probable present value, at entry, of an annuity of one monetary unit 
per year, payable for life after retirement: 

ia fu ip na{S) 
yre-S{r-b)\    ^e-^-r)dz = e0^_-am (3.3) 

(c) The probable present value, at entry, of insured salaries, allowing for 
salary progression along a salary scale sx and for escalation of the general 
level of salaries with force 7: 

pt 7<r£sjirt-b) -6(z-b)dz = [p+rt^(s--,) ,23) 
¡b la

b St, b-r-b\ ^      > 

(d) The probable present value, at entry, of a retirement pension accruing at 1 
per cent of the final salary per year of service, allowing for pension indexa- 
tion with force /?: 

ee   mitsb
e I i?e az-me      Dfs-i)ar 

(3.4) 

Functions relating to the active and retired population existing 
at time t 

In order to obtain the expressions for the active population, denoted by A(t), 
and the retired population, denoted by R{t), deriving from new entrants enter- 
ing at age b, and for the corresponding insured salary and benefit expenditure 
functions S{t) and B{t), it is necessary to regard each of these functions as 
the integrals of related functions Ac{x,t), Re{x,t), Sa{x,t) and Be(x,t) over 
the appropriate ranges of x, where x denotes age. 

The following expressions for Ac{x, t) and so on are obtained by noting that 
these are derived from the cohort entering at time t — {x — b) which numbered 
ep{t-x+b) aiKj jia¿ a saiary 0f eT(i-x+è) urlits at entry, and then allowing for: 
(i) survival from age b to age x - according to the active service table until retire- 
ment age r and according to the life table for retirees thereafter; (ii) salary 
progression according to the salary scale function sx and due to general 
salary escalation with force 7 until retirement; and (iii) pension indexation 
after retirement with force ¡3: 
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(a) Projected number of survivors from ep^~x+bS> entrants at age b, to active 
age x: 

Ac{x>t)=e^-x+^^ = e>"1^ (3.5) la Da(P) 

(b) Projected salary amount of the Ac{x, t) persons, starting from a unit salary 
at age x, which is adjusted according to the salary scale function sx and 
escalated with force 7: 

Sa{x, i) = Ac{x, ty-ie-T = e^'^-r (3.6) 
¿b D' 

as{p) 
b 

(c) Projected number of survivors from e^' x+b' entrants at age b, to pension 
age x\ 

Re{x,t) = e^-x+^^^ = e'"^1^ (3.7) 
1° If Da(p) jfM 

(d) Projected pension amount of the Re{x, t) persons, computed at (r — b) per 
cent of the salary - at retirement age r - resulting from the unit salary at 
entry age b adjusted according to the salary scale function sx and escalated 
with force 7, such pension being indexed with force /3: 

Be{x,t)=Re{X,t)r-¿ ^e^-+') ^"0 = ?_JeC.+7)<^_ ^ (3.8) 

Integrating the functions Ac{x, t) and Sa{x, t) with respect to x over the 
range {b, r) and the functions Re{x, t) and Be{x, t) over the range (r, u>), the fol- 
lowing expressions are obtained: 

(a) Total number of active lives at time t: 

A{t) = e^â^bl (3.9) 

(b) Total number of pensioners at time t: 

Ub 

(c) Total amount of salaries at time i: 

Sit) = é**^ âa^ (3.11) 

(d) Total amount of pensions at time t: 

r       h   nas(P) 

v ; 100   T)"^ v      ; 

"b 
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The symbol à•^ - occurring in (3.3) and (3.11) - represents a continuous, 
fixed-term annuity, based on the service table for active persons and on force 
of interest a, the amount of the annuity increasing from unity in line with the 
salary scale function. 

It will be apparent from the functional forms of the above expressions that, 
in the mature situation, A{t) and R{t) grow at the instantaneous rate p and S(t) 
and B{t) grow at the instantaneous rate p + 'y, thus confirming the findings 
based on general reasoning in sections 1.3 and 1.4. 

Relationship between functions relating to the population 
existing at time t and functions relating to entrants at time t 

It will be noted that the expressions for the demographic projections at time t - 
(3.9) and (3.10) - have the same structure as those of unitary annuities payable 
to the new entrants recruited at time t - (3.1) and (3.2) - except that the under- 
lying force of interest is p instead of 6. Further, the expressions for the financial 
projections at time í - (3.11) and (3.12)- have the samé structure as those for the 
present values of salaries and benefits of the new entrants recruited at time t - 
(3.3) and (3.4) - except that p replaces (5 — 7. These results, which have been 
established above for retirement benefits and for the specific pension formula, 
are in fact particular cases of more general theorems which apply also to 
invalidity and survivors' benefits and for any pension formula (Thullen, 1973, 
pp.VIII-4toVIII-ll). 

3.6    PREMIUMS IN THE FINANCIALLY MATURE SITUATION 

Limiting the consideration again to the single entry age b and to the single retire- 
ment age r, the pay-as-you-go premium in the mature situation (PAYG*) is 
obtained by dividing (3.12) by (3.11): 

r-b Df^ ü^1'^ PAYG* 
100   n<ti     ñ""^) 

The average premium for new entrants (denoted by AP2* for consistency 
with the notation in section 1.7) is obtained by dividing (3.4) by (3.3): 

API* = —£•    r.,   , -%^ (3.14) 

The terminal funding premium in the mature situation (TFS*) is obtained by 
multiplying the number of persons retiring in the interval (í, t + dt) 

rf(p) 
(f'-^dt (3.15) 

ub 
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by the retirement capital required per retiree, 

which, after division by S{t) dt and simplification, gives 

_ r-b_ Dfd üf-f» 
" 100   //*) ¿'"W ^      ' 

The similarity of the structure of the three premiums is noteworthy. This 
result, which has been established here for retirement pensions, for single 
entry and retirement ages, and for a specific pension formula, can be generalized 
to invalidity and survivors' pensions, to multiple entry and retirement ages and 
to any pension formula (ibid., pp. VIII-11 to VIII-15). 

It will be observed from (3.13), (3.14) and (3.17) that: 

• the pay-as-you-go premium depends on p, 7 and (3 but is independent of 6; 
• the average new entrant premium depends on 8,7 and j3 but is independent 

of/a; 
• the terminal funding premium depends on p, 6 and /3 but is independent of 7. 

In order to judge the effect on each premium of an increase or decrease in any of 
the relevant parameters, it is convenient to consider the structure of the 
premium formula - apart from the pension rate (r — è)/100 - in two parts. 
The first component, which relates to the active service, can be written as 

/W")      1 /a
? p-°"- 

•^V 1        _       tfJre  ,~ .„s 
pasla)   sas(*l  - J¿ laSz g-cz ^ ^•ia) 

b b:r-b\ 

where a denotes the relevant force of interest. From the right hand side, it will 
be seen that if a is increased, the exponential factor in the numerator will reduce 
relatively more than the exponential factor in the integrand in the denominator, 
so that this component of the premium formula will reduce. 

A similar argument applies to the second component of the premium formula, 

_,w=r||^ (319) 

Thus any change in the parameters leading to an increase in any of the under- 
lying forces of interest will lead to a decrease in the premiums and vice versa. 
The following conclusions can therefore be reached: 

• if pis increased, PAYG* and TFS* will decrease, but AP2* will be unaffected; 
• if 7 is increased, PAYG* will decrease and AP2* will increase, but TFS* will 

be unaffected; 
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•    if é is increased, AP2* and TFS* will decrease, but PAYG* will be unaffected; 
• ii Pis increased, all three of PAYG*, AP2* and TFS* will increase. 

The case /? = 7 (wage indexation) is of particular interest. In this case, it will 
be seen that the premiums depend only on p and the difference ¿ — 7 (sometimes 
called the real rate of interest, in relation to salary escalation). In this case the 
following observations can be made: 

• if p is increased, PAYG* and TFS* will decrease, but AP2* will be unaffected; 
• if the real rate of interest {6 — 7) is increased, PAYG* is unaffected, but TFS* 

and AP2* will reduce. However, TFS* is less sensitive than PAYG* to 
changes in p and less sensitive than AP2* to changes in ¿ - 7 (ibid., p. IX-19). 
The effects on the various premiums of variations in individual parameters, 

both when 7 > /? and 7 = ft are demonstrated numerically in table 7 of 
Appendix 2 (page 106) for the hypothetical pension scheme. 

An important deduction which can be made by comparing the expressions 
for PAYG* and AP2* is that if á - 7 < /o (i.e. é < p + 7), then the unfunded 
pay-as-you-go premium will be lower than the funded new entrant average 
premium. To make funding worthwhile, therefore, the force of interest should 
exceed the sum of the force of growth of new entrants and the force of salary 
escalation. This is the condition which was mentioned in section 1.2. 

3.7 ANALYSIS OF THE GENERAL AVERAGE PREMIUM 

Consider first the case of wage indexation (/? = 7). Let the general average pre- 
mium corresponding to this case be denoted by GAP*. Since pensions are 
always in line with the level of salaries, the expenditure function - including 
administration costs, under the assumptions stated at the end of section 1.4 
of Chapter 1 - and the insured salary function take the form 

B(t)=B*{t)e1'   and   S{t) = S* {t) e1' 

where B*{i) and S*{t) do not involve 7. The general average premium (see 
equation (1.14) of Chapter 1) can therefore be expressed as 

rA^ „ rB*{t) e-(*-»dt = £B*{i) e-*' dt 
SfS'tfe-V-^'dt     ^S*{t)e-*'dt y      ' 

where 0 denotes the real rate of interest. The effect on GAP* of changes in the 
real rate of interest can be investigated by partially differentiating the above 
expression with respect to <p (p being held constant) and considering the sign 
of the differential coefficient. The expression for the partial differential co- 
efficient is as follows: 

d{GAP ) = GAp*,ADTS _ ADTB) (3.21) 
ocp 
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where ADTS and ADTB, respectively, denote the average discounted terms of 
S{t) and B{t) and are given by 

ADTS     rgWf^ f322i 
SS°S{t)e-*'dt {322) 

50•tB{t)e-s'dt 
AmB- ^B{t)e-*'dt (3-23) 

It can therefore be concluded that GAP* will decrease when the real rate of 
interest is increased, subject to the condition that the average discounted term of 
the function B{t) is greater than that of the function S{t). It will be noted that if 
B(t) and S{i) have the characteristics mentioned at the end of section 1.4, then 
their average discounted terms will meet the above condition. It is assumed in 
what follows that ADTB > ADTS. 

The general case (/? ^ 7) is complex, but considering retirement pensions 
alone and a single retirement age r, the general average premium can be 
expressed as 

GAP=[GAP*]LT (3.24) 
Ut- 

This will be evident if the numerator of GAP is regarded as the sum of the 
probable present values of the pension expenditures of individual cohorts. Let 
/ denote the second factor on the right-hand side of (3.24). Let ADTl and 
ADT2 represent the average discounted terms of the annuities in the numerator 
and denominator of/. It can be shown that, provided /? < 7, ADT2 > ADTl. 
The partial differential coefficients of GAP with respect to S and 7 can be 
expressed as 

^¿     = GAP[-(ADTB - ADTS) + (ADT2 - ADTl)] 

d(GAF) (3-25) 

^—'- = GAP[ADTB - ADTS - ADT2] 

The first expression of (3.25) indicates that, subject to the condition 
ADTB — ADTS > ADT2 — ADTl, an increase in 6 leads to a decrease in 
GAP. The second expression indicates that an increase in 7 will lead to an 
increase in GAP, subject to the condition ADTB - ADTS > ADT2. Since 
GAP* and the denominator of/are both independent of ¡3, it is evident from 
(3.24) that an increase in /3 will lead to an increase in GAP. 

To analyse the effect on the general average premium of changes in the force of 
growth of new entrants (p), consider equation (1.17) of Chapter 1. The part concern- 
ing the initial insured population obviously does not depend on p. AP2 will also not 
be affected by a change in p - see section 3.6, above. An increase in p will, however, 
increase the salaries of new entrants and therefore increase the weight of AP2 in 
equation (1.17). This will lead to a decrease in GAP since AP2 < API. 
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The effect of changes in the parameters on GAP and GAP* is illustrated in 
table 7 of Appendix 2. With reference to GAP*, it will be noted that a decrease 
in the real rate of interest can be compensated by an increase in the force 
of recruitment of new entrants. This is an aspect of the interchangeability of 
biométrie and economic parameters (Zelenka, 1959). 

3.8 RESERVES IN THE FINANCIALLY MATURE SITUATION 

If financial maturity is attained at t = u>2, the following relationship holds 
between the reserve at the onset of maturity and the level premium TT required 
in the mature situation: 

^O-^rSM (326) 

The above result was proved in section 1.9; it is valid, subject to the condi- 
tion 6 > p + j, for any financial system which applies a level premium during 
maturity. Further, it can be shown that the reserve at any subsequent time 
t = (¿2 + zis given by Vfa + z) = Vi^) e^+7'z. Thus once financial maturity 
is attained, the reserve function grows at the same pace as the benefit and salary 
functions. 

The system reserve function can be expressed as follows in terms of the 
system premium and the pay-as-you-go premium in the mature situation: 

V(t){6-p-i) = ,S0)(PAYG* -TT) (3.27) 

This also implies that the higher the system premium, the lower the system 
reserves in the mature situation, a phenomenon which was consistently 
observed in the illustrations of the financial systems in Chapters 1 and 2. 

3.9 THE EFFECT OF MORTALITY AND INVALIDITY 
DECREMENTS 

The active population is subject to two decrements: mortality and invalidity. 
The retired population is subject to the mortality decrement only. The force 
of each decrement will be gender and age specific. In this section, the effect 
on the premiums (for retirement benefits) of assuming higher levels of mortality 
(or invalidity) is discussed. 

Let the forces of the mortality and the invalidity decrements at age x be 
denoted by ¿4 and nl

x. Then the active service table function {b <x <r) is 
given by 

la
x = 11 exp f- j4 (^ + Á)<fe) (3.28) 

This shows that the effect of an increase in the force of invalidity is equivalent to 
the same increase in the force of mortality at the same age. 
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Reference is now made to the important result that an increase in the rate 
of mortality is equivalent to an increase in the rate of interest (Jordan, 1967, 
pp. 56-57). Thus an increase in either the force of invalidity or the force of 
mortality over the active service age range {b,r) should produce the same 
effect as an increase in the force of interest over this range, and an increase 
in the force of mortality after retirement should produce the same effect as 
an increase in the force of interest over the age-range (r,w). Thus, an increase 
in either the force of mortality or the force of invalidity will lead to a decrease 
in the premiums. 

It should be noted, however, that the above-mentioned effect of the mortal- 
ity and invalidity decrements apply only to premiums relating to retirement 
pensions. The effect on the premium relating to survivors' pensions of a 
higher force of mortality will be contrary, and so will be the effect on the pre- 
mium for invalidity pensions of a higher force of invalidity. This produces a 
mutually compensating effect in a comprehensive social security pension 
scheme covering añ three risks of retirement, invalidity and death (Thullen, 
1973, p.IX-7andIX-10). 

3.10 THE EFFECT OF THE DENSITY FACTOR 

The density factor was defined in section 1.2 as the proportion of potential time 
that members in the active age range are effectively contributing to the scheme. 
Hitherto, the density was assumed uniformly at 100 per cent at all ages. The 
effect on the premiums discussed in section 3.6, of a lower density, possibly vary- 
ing by age, is considered in this section. (The possibility of service credits during 
non-contributory periods, for example during sickness, is ignored here). It is 
recognized that there are also other similar factors affecting contribution 
income, such as evasion or underdeclaration of contributory earnings, but 
they are not discussed here. 

Let A(x) denote the proportion of insured persons who are effectively in 
contributory service at age x. Assuming that the density factor uniformly affects 
all individuals of a given age, the total contributory service of a new entrant at 
age b on reaching retirement age r would be J¿ \{x) dx. It can be shown that the 
effect of a different density assumption is to alter the premium AP2* for 100 per 
cent density by the factor A1/A2 and the corresponding PAYG* and TFS* 
premiums by the factor Aj/^, where Aj, A2 and A3 are averages of A(x) over 
the age range {b, r) given by 

= rbx{X)dX 

r — b 

A  __ ¡lD°x^\{x)dX 
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¡r
bD

a
x
si>')Xix)dx 

¡¡D^dx 
= Jb„x     ,^ 

It would appear that, even if the density differs from 100 per cent, provided 
that it does not vary by age, Aj = A2 = A3; the premiums are not affected. If den- 
sity does vary by age, the exact effect on PAYG* TFS* and AP2* will depend on 
the nature of the functions \{x), Da

x
s^ and D"s(ï"7). For example, if A(x) is an 

increasing function of x and the salary scale function is flat, then A! is likely to 
be greater than A2 and A3 so that all the three premiums will increase. 

3.11    THE IMPLICATION OF THE FUNDING LEVEL FOR 
PENSION INDEXATION 

For the purposes of this section, the forces of interest and salary escalation are 
regarded as functions of time, S{i) and 7(i). In equations (3.14) and (3.17), if pis 
put equal to 7, the expressions for AP2* and TFS* will involve only the 
difference 6 — j. This will also be the case with the GAP* - see equation 
(3.20). Therefore, provided that an increase in the force of salary escalation 
7(t) is compensated by a corresponding increase in the force of interest S{t), 
this will leave their difference unchanged. It would therefore be possible to con- 
tinue to provide wage indexation without requiring any change in premiums 
computed on the basis of a given real interest rate. The consequences of the 
more common phenomenon of an increase in salary escalation without an 
equal compensating increase in the interest rate is discussed below (ibid., 
pp. X-4 to X-6). 

To be specific, consider an isolated, unanticipated, proportionate increase k 
in insured salaries at time t. This will have a repercussion on all future salaries, 
which will all increase in the same proportion. Let ki represent the proportion- 
ate adjustment which can be given to future pensions. The following are the 
equations of equilibrium just before and just after the salary increase: 

roo poo 

V{t)e-Sl=\    B{z)e-Szdz-\    C{z)S{z) e-6z dz (3.32) 

POO 

V{t) e"* = (1 + fej)      B{z) e-& & - (1 + k) 

Combining the two equations and simplifying. 

C{z)S(z)e-6zdz        (3.33) 

k $•B{z)e-Szdz ^      ' 

It is seen that in general, 0 < ^1 < A;. Moreover, the lower the reserve function 
V{t), the higher the ratio ki/k. Only when V{t) = 0, that is when the financial 
system is pay-as-you-go, is ^ = A; and pensions can be fully adjusted to this 
isolated increase in salaries. 
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If a distinction is made between pensions in payment at time t and those to 
be awarded in the future, and if any increase in insured salaries automatically 
raises pensions to be awarded in the same proportion because of the pension 
formula - for example, because the pension is based on the final salary - let 
fc2 represent the proportionate increase which can be given to existing pensions. 
The equation of equilibrium after the increase in salaries will then be as follows: 

'00 fOO 

V{f) e'61 = (1+ &)      Ba{z) e-& dz + {l+k2)\    Bb{z) e-& dz 

roo 
- (1 + fc)      C{z)S{z) e-& dz (3.35) 

where Bb{z) denotes the expenditure at time z on pensions in payment at time t 
and Ba{z) denotes the expenditure on pensions to be awarded after time t. 
Denoting the reserve for pensioners at time t by Vh{t) and that for active persons 
by Pa(0 where Va{t) + Vb{t) = V{t), combining with equation (3.32) and 
simplifying, the following relationship is obtained: 

-k-'nU) (3-36) 

This shows that only if the reserve for active persons is negative (i.e. 
V{t) < Vb{t) meaning that the financial system involves lower funding than 
the terminal funding system) will it be possible to provide any adjustment to 
existing pensions. 

Hence the level of funding acts as a constraint to pension indexation. This 
might appear somewhat paradoxical, but the explanation is that funding is 
supposed to make advance provision for future pension expenditures, including 
the cost of indexation. The lack of provision in the past in respect of pension 
adjustment for unanticipated salary escalation shows up in the form of a 
shortfall in reserves. Although future salaries - and therefore contributions - 
do increase proportionately, this is not adequate to make up for the shortfall 
in the reserves, and consequently allows only a partial adjustment of pensions. 
It is of course possible to cover the shortfall by increasing future contributions 
or by augmenting the reserves through the injection of additional funds, but this 
means that there is a departure from the original plan. Only the PAYG system 
can withstand the effects of unanticipated salary increases without modifying 
the contribution rates. 

On the other hand, the pay-as-you-go system is vulnerable to unanticipated 
demographic changes. For example, if the force of growth of new entrants, after 
being constant at a level p drops to a lower level pi over m years and then 
remains constant, this will cause the PAYG* premium pertaining to retirement 
pensions to increase over a period oí uj + m- b years, whereas the average 
premium for new entrants AP2* will be unaffected (Iyer and McGillivray, 
1988, pp. 35-36). 
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3.12    FURTHER GENERALIZATION OF THE THEORY 

The theory developed in Chapter 1 and the present chapter can be generalized 
further. Some possible directions are mentioned in this section, but are not 
developed in detail. 

Additional population decrements or increments 

The theory developed so far has considered only two decrements, mortality and 
invalidity, of the insured active population. In certain circumstances it may be 
necessary to allow for additional decrements, in particular if there are distinct 
provisions in regard to the pension benefit. For example, active persons exiting 
from insured status owing to industrial injury may need to be distinguished 
separately. Withdrawal from the pension scheme before reaching retirement 
age is an important decrement for occupational pensions, but is not generally 
relevant to a social security pension scheme operating at the national level. In 
any case, the extension to three or more decrements can be handled through 
the application of multiple decrement theory (see Appendix 1). 

A variation on the concept of decrements is that of reactivation of the 
invalid population, that is, a reverse movement from the invalid group towards 
the active insured group. In effect, the invalid group is then subject to two 
decrements (death and reactivation), while the active group is subject to two 
decrements (death and invalidity) and two increments (new entries and reactiva- 
tion). For the treatment of reactivation, see Thullen, 1973, pp. 11-16 and 11-17. 

Parametric variation over time 

It has been assumed thus far that the determining parameters do not vary over 
time. However, it is possible to incorporate such a variation. For example, if the 
force of interest 6 is regarded as a function of time, the fundamental equation of 
equilibrium - equation (1.7) - would be written as follows: 

C{z)S{z) exp ( - [  6{u) du\ dz = T B{z) exp ( - [  5(M) du\ dz (3.37) 

Other parameters can be treated similarly. Specific functional forms of the 
parameter - more complex, for example, than the simple ¿(M) = constant - 
could be investigated. However, the mathematical manipulation of the expres- 
sions is liable to be complicated. It would therefore be more practicable to use 
computer simulation methods, such as those discussed in Part II of this book, to 
study the effect of variation in parameters over time. 

Generalization of the concept of maturity 

The demographic and financial maturity discussed so far, based on constant 
parameters p and 7, relates to what is termed a "stable" mature situation 
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which implies that all the demographic and financial aggregates are growing 
exponentially. (If p = 7 = 0, the mature situation is described as "absolutely 
stationary"; the demographic and financial aggregates will then be constant 
over time). 

A more general concept is that of a "relatively stationary" mature situation 
(ibid., pp.V-4 and V-17). A pension scheme is defined to be in a "relatively 
stationary" demographic situation if the relative age distributions of the 
active insured and retired populations are constant, without these populations 
necessarily growing exponentially. In symbols, the functions Ac{x, t) and 
Re{x, t) - denoting respectively the active and retired populations aged x at 
time t - are of the form ip{t)L{x), where ip{i) is any function of t. If ^(i) is an 
exponential function, we have the case of the "stable" demographically 
mature situation - see equations (3.5) and (3.7). 

A scheme is said to be in a "relatively stationary" financial situation if the 
benefit expenditure function, the salary function and the reserve function are 
all growing at the same instantaneous rate, without this rate being necessarily 
constant over time. Symbolically, 

where Ç{t) is any function of t. If £(i) is a constant {p + 7), we have the case of 
the "stable" financially mature situation - see equations (3.11) and (3.12). 

The stochastic approach 

As already indicated in Chapter 1, sections 1.3 and 1.4, the approach taken in 
this book is deterministic. This means that, given the underlying parameters, 
the outcome in terms of the actuarial functions is taken as uniquely determined. 
Under the stochastic approach the resulting value of an actuarial function is 
regarded only as the average or expected value of the outcome. The actual 
outcome has a probability distribution, hence its precise value is uncertain. 
However, probabilistic statements can be made about the function if the 
variance of the distribution can be determined. 

To take an elementary example, consider the number of deaths occurring in 
one year out of a known initial number of lx persons at age x, given the prob- 
ability of death qx. In the deterministic approach, the number of deaths is taken 
as the unique number dx = lxqx. In the stochastic approach, the number of 
deaths, say y, is regarded as a random variable whose expected value {p) is 
given by lxqx. In this simple case, the distribution of y can be seen to be the 
binomial distribution; hence the variance of the distribution (o-2) will be given 
by lxqx{\ — qx). Using the normal approximation, it can then be stated, for 
example, that 

Probability^ - 1.96(7 <y<p+ 1.96o-) = 0.95 (3.39) 
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Actuarial functions are usually complex functions involving several 
variables. Although the probability distribution of each variable is known, it 
is generally not possible analytically to derive the probability distribution of 
the function itself and thus to obtain an algebraic expression for its variance. 
The solution then is to carry out multiple simulations of the whole process 
and to estimate the variance from the results. Each simulation involves the 
drawing of a random value of each variable occurring in the actuarial function. 

Stochastic methods have been widely applied in general and life insurance 
(Bowers et al., 1997; Daykin et al., 1994), but have seen only limited application 
in the field of pensions (see, however, Daykin et al., 1994, pp. 435-451). 

3.13    CONCLUDING REMARKS 

In concluding this treatment of the financing of social security pensions, the 
important long-term relationship between the forces of interest, demographic 
growth and salary escalation (i.e. ¿) > p + 7), mentioned in section 1.2, is 
recalled and stressed. In fact, this condition has repeatedly appeared at various 
stages in Chapter 1 and in the present chapter. If this condition did not hold, 
several integrals intervening in the theoretical development would not converge. 

Another important point concerns the implications of the parametric 
assumptions for the growth of the expenditure and insured salary functions, 
B{t) and S{t). The assumption that the forces of growth p and 7 continue 
indefinitely into the future imply - see sections 1.4 and 3.5 - that once financial 
maturity is attained, the functions B{t) and S{t) would grow with force /> + 7 
indefinitely into the future. This could, however, be questioned on common- 
sensical grounds since the size of these aggregates resulting from such 
unchecked exponential growth could at some stage conceivably outstrip the 
resources available to sustain them. It might therefore be more logical to 
expect the growth rate to slow down and for these aggregates to stabilize. 

In this regard, it will be noted that what intervenes in the various integrals is 
not these aggregates themselves but rather their discounted values. Given the 
condition 6 > p + j, the contribution of the expenditure and insured salary 
functions to the integrals in fact decreases exponentially so that in any case 
they become insignificant in course of time. Thus the theory which has been 
developed is not inconsistent with an eventual asymptotic stabilization of the 
financial aggregates. 
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4.1 INTRODUCTION 

Chapters 1 to 3 were concerned with what is termed "defined benefit" schemes. 
In these schemes, the benefit formula is specified in advance and the financial 
system, including the schedule of contributions, is then determined so as to 
ensure the financial equilibrium of the scheme. 

This chapter is concerned with "defined contribution" schemes, where the 
sequence of designing benefits and then contributions is reversed. Thus, the 
rate of contribution is fixed in advance, and the benefit becomes the dependent 
variable. Each member's contributions are accumulated in an individual 
account, with interest or investment return, and the balance in the account is 
paid out either as a lump sum, or in the form of an annuity, on the occurrence 
of one of the covered contingencies, that is, retirement, invalidity or death in 
service. 

There are also instances of hybrid schemes where there is a defined benefit, 
but it is calculated by a formula which derives from the contributions paid or 
where the benefit is the better of a defined contribution calculation and a defined 
benefit. Another variant is the "notional defined contribution scheme". This 
chapter will, however, be mainly concerned with straightforward defined contri- 
bution schemes operating at the national level. This includes the so-called 
national provident funds and a relatively recent innovation, the mandatory 
retirement savings scheme. 

4.2 ACTUARIAL STRUCTURE 

From an actuarial point of view the structure of defined contribution schemes is 
simple, although methods for attributing the investment return to individual 
accounts may be relatively complex. There are no systematic cross-subsidies 
within or between generations during the funding stage, since members are 
entitled to the invested accumulation (or an approximation thereto) of what 
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they have paid in (or has been paid in on their behalf). The only elements of 
insurance relate to arrangements made to secure benefits on invalidity or 
death before normal retirement age, as well as the insurance against longevity 
where annuities are paid over the retired lifetime of pensioners. 

As regards the determining parameters - see section 1.2 of Chapter 1 - the 
forces of interest, salary escalation and inflation (S, 7 and 9) are particularly 
relevant to the discussion of the financial aspects of defined contribution 
schemes. In a defined contribution scheme, the benefit is determined, apart 
from the contributions themselves, by the interest or investment return credited 
to the individual accounts, while the successive contributions are determined by 
the member's salary progression. On the other hand, the real value of the benefit 
will be affected by inflation over the contributory career. The risks associated 
with these factors, in particular the risk that the investment returns may not 
keep up with inflation over the period of membership, are borne by the indivi- 
dual member. This contrasts with the case of a defined benefit scheme, where 
these risks are borne by the sponsor of an occupational plan, or collectively 
by all contributors to a social security pension scheme. 

With regard to the financial system, unlike a defined benefit scheme, there is 
no question of a choice, since by its very definition, a defined contribution 
scheme is necessarily fully funded on an individual basis. Moreover, to make 
the ultimate benefit meaningful, it is usually necessary to have a relatively 
high contribution rate from the outset unless an age-related contribution 
schedule is specified, which might involve quite high levels of contribution as 
retirement age approaches. Consequently, a defined contribution social security 
scheme does not have the flexibility of adapting the reserve accumulation to the 
investment needs and the absorptive capacity of the national economy, a possi- 
bility for defined benefit schemes (see section 1.11). In addition, the transpar- 
ency of the arrangement for the attribution of investment return to individual 
accounts (normally reported to members at least once a year) tends to constrain 
investment policy to avoid the possibility of negative returns in the short term, 
even if this means forgoing the potential for a higher return in the long term. 

The maturing process of a newly introduced defined contribution scheme is 
similar to that of a new defined benefit scheme, described in section 1.4 (Iyer, 
1971). Under the simplified assumptions of Chapter 1, including the constancy 
of the determining parameters, a national provident fund providing lump-sum 
retirement benefits only would attain financial maturity when the youngest 
initial entrant reached retirement age. A corresponding mandatory retirement 
savings scheme which pays annuities in lieu of lump sums would attain financial 
maturity when the youngest initial entrant reached the limit of life. 

4.3    ANALYSIS OF THE ACCUMULATED BALANCE 

For the purposes of this chapter, it is proposed to introduce the parameter 7*, 
which represents the force of growth of the salary of a participant, assumed 
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constant throughout his or her career. It represents the combined effect of 
general salary escalation (7) and progression of the member's salary due to 
advancing seniority (the salary scale effect). Thus, 7* would generally be greater 
than 7 and may exceed 6. 

Taking the starting annual salary as one monetary unit and the contribution 
density as 100 per cent, the accumulated balance after a contributory career of n 
years will be given by 

,
e7*Z/(«-z)i;z = 7re«^(j--«) =7re«7'â(7,-«) (4!) 

The accumulated balance can also be expressed as 

Tre^â^-7*'=^e"7*4j"7*) (4.2) 

where TT represents the contribution rate. Mathematically, all four expres- 
sions are acceptable although (4.1) may be preferred when 7* is greater 
than 6 and (4.2) in the case where ¿» > 7*. This is, however, only a matter 
of presentation and both forms 5 — 7* and 7* — é are used in the following 
development. 

It is useful to relate the accumulated balance to the final annual salary, e"7 , 
which represents the member's earning power just before retirement. This gives 
the following result for the relative accumulated balance, that is, the balance as 
a multiple of the final salary: 

•(tS) (4-3) 
This shows that the relative accumulated balance depends only on the difference 
7* - 8. The lower this difference (i.e. the higher 6 relative to 7* ), the higher the 
relative accumulated balance. 

The total nominal amount of the contributions (excluding interest) is given 
by 

TT "el'zdz = -Keni'ü^) (4.4) 

By dividing (4.2) by (4.4), the accumulated balance can be expressed as a 
multiple of the sum of the contributions, which shows the relative importance 
of the interest element in the balance 

añ\ 
-(7*) 

(4.5) 

The above expression, however, relates to monetary amounts and is there- 
fore in nominal terms. In order to pass to "real" terms, it is necessary to dis- 
count both the accumulated balance (4.2) and the integrand on the left-hand 
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side of (4.4) for inflation. This gives the following expression for the "real" 
balance as a multiple of the sum of "real" contributions: 

=(7--i) 
^  
=(r-fl) 
añ\ 

(4.6) 

By noting that the higher the underlying force of interest, the lower the value 
of the annuity, it can be seen that the condition for (4.5) to exceed unity is ¿ > 0; 
and the condition for (4.6) to exceed unity is 6 > 6. \í Q < 8 <6, (4.5) will 
exceed unity but (4.6) will be less than unity. In this case the member, although 
apparently receiving an addition to his or her contributions in the form of 
interest, actually suffers a loss in real terms on contributions to the scheme, 
that is, earns a negative real rate of return. 

4.4    ANALYSIS OF THE RETIREMENT ANNUITY 

If the balance is converted into an annuity at, say, age x, the replacement rate, 
that is, the initial amount of the annuity as a percentage of the terminal salary, 
will be obtained by dividing (4.3) by the appropriate annuity factor. The 
simplest case is where the annuity is payable for m years certain and is not 
indexed. The replacement rate is then given by 

If the annuity is to be indexed with force /?, then the annuity factor in the 
denominator should refer to force {6 — f3), which will lead to a lower replace- 
ment rate. This illustrates an important difference between defined contribution 
and defined benefit schemes; in the latter schemes, indexation of the pension, if 
provided for, generally forms part of the benefit package, whereas in the former, 
indexation has to be traded off against a lower replacement rate. 

The balance can be converted into an indexed life annuity by using the 
annuity factor â^®. A survivors' element can be added by modifying the 
annuity factor. For example, a spouse's annuity equal to a proportion k of 
the retirement annuity can be accommodated by replacing the annuity factor 
by «if~^ +kâJcS/yl3\ where y represents the age of the spouse at retirement. 
Again, this will lead to a reduction in the replacement rate. This contrasts 
with defined benefit schemes, where the survivor's pension is part of the benefit 
package. In a defined contribution scheme, a survivor's pension has to be traded 
off against a lower replacement rate. 

The replacement rate will increase if either 7* — ¿ decreases or 6 — 0 
increases. Thus a higher rate of interest relative to the rate of salary progression 
and/or of indexation increases the replacement rate. 
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4.5    THE EFFECT OF THE DENSITY FACTOR 

The above discussion has assumed that the density of contributions is 100 per 
cent throughout the contributory career of the participant. If the density is 
uniform but less than 100 per cent, the accumulated balance and related entities, 
discussed in section 4.3 above, will be proportionately reduced. 

If there are gaps in the contributory service, the density will vary over the 
contributory career of the member. In this section the effect of a single gap of 
m years during a total contributory career of n years is investigated. 

Let the gap occur t years after the entry {ft < t <n — m). The accumulated 
balance at the end of the career, assuming that the break in service does not 
affect the salary progression, will be given by 

ft en pni 

TT    ^'V^-^ife + TT e7V("-z)¿z = 7^^-[/^(l-e'*m)-(l-e'*',)]       (4.8) 
Jo Ji+m <p 

where ^* = 7* - 8. Differentiating the above expression with respect to t yields 
the following expression for the differential coefficient: 

•Ke"se^t{\-e4''m) (4.9) 

It will be obvious that the differential coefficient is negative if 7* > ¿) and posi- 
tive otherwise. The following conclusions can be drawn: 

• the location of the gap within the contributory career affects the balance; 
• if the force of growth of the individual's salary exceeds the force of interest, 

the earlier the gap the higher the accumulated balance: otherwise, the later 
the gap the higher the balance. 

The same conclusions are valid for the relative accumulated balance and 
other entities based on it. 

On the other hand, in a defined benefit scheme in which the retirement pen- 
sion is based on the final salary and is proportional to the contributory service 
period, the retirement pension, although affected by a gap in service, does not 
depend on the stage in the career where the gap occurs. 

4.6    THE IMPORTANCE OF THE INTEREST ELEMENT 

The discussion in sections 4.3 and 4.4 above has highlighted the importance of 
the interest element in the benefit derived from a defined contribution scheme. 
Of course, the interest element is equally important in a defined benefit scheme, 
but it intervenes in a different way; a higher interest yield on the reserves does 
not affect ¡the benefits but will reduce the contributions which would otherwise 
be required under a financial system which involves a degree of funding. In a 
defined contribution scheme, on the other hand, the interest credited to 
individual balances in any period would be directly related to the yield on the 
invested funds of the scheme in the same period, which therefore has a direct 
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effect on each individual's benefit. This suggests that both defined contribution 
and funded defined benefit schemes should aim at maximizing the yield on the 
invested reserves. It is not proposed here to enter into a discussion of the invest- 
ment aspects of reserve funds, but it is noted that there are special considera- 
tions which arise with defined contribution schemes, in particular the need to 
engender confidence that the capital is reasonably protected (Daykin, 1996). 

4.7    THE CONTRIBUTION RATE FOR A SPECIFIED 
REPLACEMENT RATE 

For a person entering at age b and retiring at age r, the contribution rate which 
will lead to a pension computed at 1 per cent of the final salary per year of ser- 
vice can be established by equating the accumulated balance (4.1) to the value of 
the pension (payable for life) at retirement. This will give the following formula, 
which allows for indexation of the pension with force (3: 

, = LZV-^)^ (4 10) 
100 atL^ {      ' 

r-b\ 

This may be compared with the expression (2.13) of Chapter 2, adapted in 
terms of the parameter 7*: 

r-b Df-^ 
100  ^«(«-T*) 

^(«-,8) (4.11) 

The difference is that in (4.10) the equivalence is established at retirement 
age r, whereas in (4.11) it is established at entry age b. The expression (4.11) 
allows for decrements due to death or invalidity before retirement age, which 
means that the premium computed by (4.11) will be lower than that correspond- 
ing to (4.10). It is important to appreciate this difference and to note that the 
premium given by the simpler formula (4.10) is not an actuarial premium 
based on the insurance approach (Ferrara and Drouin, 1996). 

4.8    TRANSFORMATION FROM DEFINED CONTRIBUTION TO 
DEFINED BENEFIT OR VICE VERSA 

There is substantial difference of opinion among experts in regard to the relative 
advantages and disadvantages of defined contribution and defined benefit 
schemes (World Bank, 1994: Beattie and McGillivray, 1995). A compromise 
solution would consist in having both types of scheme simultaneously, in com- 
plementary tiers (Iyer, 1993). A social security pension reform could therefore 
involve the transformation, either partly or fully, of an existing scheme in 
either direction. The financial implications of such transformations are dis- 
cussed below. 
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If a defined contribution scheme is to be transformed into a defined benefit 
scheme, an important question concerns the disposition of the accumulated 
balances of the members existing on the date of change. The possible options 
include (McGillivray, 1992, pp. 51-54): 

(a) paying out the accumulated balances immediately; 
(b) freezing the balances and paying them out, with the continued addition of 

interest, as and when due under the rules of the old scheme; 
(c) converting the balances into annuities on the date of transformation; 
(d) converting the accumulated balances into pension credits. 

Option (d) is generally preferred owing particularly to the advantage that it 
will permit the defined benefit scheme to "take off" right from the outset. 
Members could be given the option to convert only a part of their balance 
into credits and to receive the remainder under old rules. 

The following is a simple formula for converting accumulated balances into 
periods of service for the purpose of the defined benefit scheme. For example, if 
BAL represents the accumulated balance, SAL the salary on the date of conver- 
sion, and CR the contribution rate under the deñned contribution scheme, the 
credited service period CDT could be taken as 

CDT = SÂ^CR W 
This formula estimates the past service exactly if throughout membership the 
rate of interest credited to the balance was equal to the rate of increase of the 
contributory salary, and the contribution rate under the deñned contribution 
scheme had remained unchanged. Otherwise, the formula should be adjusted. 
The additional pension earned by virtue of CDT would, in general, differ 
from the periodic payment resulting from converting BAL into an annuity 
according to the approach in section 4.4, above. 

In the opposite case, when a partially funded defined benefit scheme is trans- 
formed into a fully funded defined contribution scheme, there will arise an 
unfunded accrued liability in respect of the past service of existing insured per- 
sons at the time of transformation, owing to the under-funding of service 
benefits under the defined benefit scheme. This is similar to the situation at 
the outset of an occupational pension scheme, as discussed in Chapter 2. The 
amortization of this liability would require special additional contributions, 
or in a social security scheme the government may assume the liability for 
past service. Since such a transformation normally requires the transition 
generation to bear a double burden (that is, payment of pensions to existing 
retired persons as well as contributions to their own individual accounts), the 
latter alternative is usually followed. 
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THE PROJECTION TECHNIQUE FOR 
ACTUARIAL VALUATIONS 5 

5.1     INTRODUCTION 

Part II of this book is concerned with the practical aspects of the actuarial 
management of social security pension schemes. This chapter deals with the 
projection technique, which corresponds to the first of the two approaches 
for the analysis of pension schemes, mentioned in section 3.2 of Chapter 3. 
The present value technique, which corresponds to the second approach, is 
the subject of Chapter 6. 

It is not the purpose of this chapter to produce a computer programme 
which can be readily applied to establish projections. Rather, the purpose is 
to elaborate on the basis and the methodology of the projection technique. 
Although invalidity and survivors' pensions are included in the treatment, the 
illustrations refer, as in Part I, mainly to retirement pensions and to a simple 
pension formula, directly related to the service period and the final salary. 

5.2    ACTUARIAL VALUATIONS OF SOCIAL SECURITY 
PENSION SCHEMES 

In Chapter 1, the theory of financing social security pension schemes was 
developed on the assumption that the projections made at the outset of the 
scheme would be exactly realized. However, this is highly unlikely, and in prac- 
tice the experience will diverge from the projected values. In the first place, the 
actual values of the determining parameters - see section 1.2 - may differ from 
those assumed at the outset and, secondly, there will be stochastic variations 
around these parameters. Moreover, the scope of application of the scheme 
or the benefit provisions might have been modified in the interim. As a result, 
whatever the financial system adopted at the outset, as the experience unfolds 
there will be actuarial gains or losses, the cumulative effect of which will be 
reflected in the accumulated reserve fund. 
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There is also the question of the value placed on the reserve fund itself, 
because the fund will not in general be merely placed in a bank account at 
interest, but might be invested in a variety of assets (bonds, shares, real 
estate, and so on). Further, there are different approaches to the valuation of 
such assets (book value, market value, discounted value of future proceeds, 
and so on). Thus, it should be expected that at the time t = n, the actuarial 
valuation date, the reserve fund will diverge from the projected value which 
was designated as V{n) in Chapter 1. To highlight this, the value placed on 
the reserve fund will be denoted by Fd{n) in this chapter. 

A second aspect concerns the parametric assumptions relating to the future. 
The assumptions made at the preceding actuarial valuation - at í = « - for 
the period (n, m) may not be considered appropriate at í = w, on the basis of 
the analysis of the inter-valuation experience. The necessary modifications to the 
financing arrangements will need to be effected through an actuarial valuation of 
the scheme undertaken at t = m, based on revised assumptions in regard to the 
parameters and taking credit for the accumulated reserve fund, valued at Fd{m). 

Actuarial valuations of social security pension schemes are generally statu- 
tory requirements at prescribed intervals (three to five years). In addition, 
interim internal valuations may sometimes be performed. In view of the open 
fund approach and the application of partial funding, the projection technique 
is the appropriate technique for the valuation of social security pension 
schemes. The main purpose of a periodic valuation of an ongoing scheme is 
to test its long-term solvency, that is, to assess whether under the existing finan- 
cing arrangements benefits can be paid and reserve funds maintained at the 
required levels. In this regard, particular importance attaches to changes in 
income and expenditure projections in successive valuations, which may 
signal the need to change the financing arrangements. Any significant proposed 
scheme modifications will require actuarial assessment through an ad hoc valua- 
tion. When performing an initial valuation preceding a scheme's introduction, 
computation for alternative financial systems will be required. In view of the 
uncertainty of future assumptions, sensitivity testing on the basis of multiple 
projections is indicated (McGillivray, 1996; Picard, 1996). 

5.3    ALTERNATIVE PROJECTION METHODOLOGIES 

There are different methodologies for social security pension scheme projec- 
tions. These include (Crescentini and Spandonaro, 1992): 

(a) actuarial methods; 
(b) econometric methods; and 
(c) mixed methods. 

Methods classified under (a) have long been applied in the field of insurance 
and have also proved valuable for social security projections. Methods classified 
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under (b) are in effect extrapolations of past trends, using regression techniques. 
Essentially, the difference between the two is that actuarial methods depend on 
endogenous (that is, internal to the model) factors, whereas econometric meth- 
ods are based on exogenous factors. Methods classified under (c) rely partly on 
endogenous and partly on exogenous factors. This chapter is mainly concerned 
with methods classified under (a) above, and to some extent with those classified 
under (c). 

An approach which may be taken, when a substantial part of the population 
is covered and the scheme is fairly mature, is to use national population or 
labour force projections as the basis and apply appropriate proportions to 
the results of the national projections to derive social security projections. In 
this chapter a more general method of pension scheme projection, termed the 
component method, is described. However, this does not preclude reference 
to national population or labour force projections for determining certain pro- 
jection factors or elements. 

The component method, as the name suggests, breaks the covered population 
down into components and simulates the evolution of each component over 
time. The extent of the breakdown will depend on the availability of data for 
the valuation and also on the computing capacity at the disposal of the actuary. 
The minimum breakdown required is by category of covered person (i.e. active 
insured persons, retirees, invalids, widows/widowers and orphans), by male and 
female within each category and by single age within each sex. Additional 
breakdowns may include the analysis of the active population by past service 
and by income level. In this regard, it is evident that an additional breakdown 
can be justified only if it can be expected to lead to a commensurate increase in 
the precision of the projections. 

In addition to the initial data, the inputs include assumptions on the param- 
eters - such as those mentioned in section 1.2- which will affect the evolution of 
the various components of the concerned aggregates. The methodology will 
need to be tailored to the level of complexity of the assumptions. In other 
words, depending on the nature of the assumptions, the methodology can some- 
times be simplified - as indicated, for example, in section 5.13, below. This sug- 
gests that, generally speaking, the parametric assumptions should be kept as 
simple as possible, unless there are adequate grounds to do otherwise. 

This chapter discusses alternative methodologies for the component method, 
which depend, on the one hand, on the nature of the available data and, on the 
other, on the nature of the assumptions in regard to the determining parameters. 

5.4    DEMOGRAPHIC PROJECTIONS: GENERAL 
DESCRIPTION 

The first step in the projection technique is the production of estimates of num- 
bers of individuals in each of the principal population subgroups (active insured 
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persons, retirees, invalids, widows/widowers, orphans) at discrete time-points 
(i = 1,2,...), starting from given initial values (at t — 0). 

The demographic projection procedure can be regarded as the iteration of a 
matrix multiplication operation, typified as follows (based on Crescentini and 
Spandonaro, 1992): 

ifir- CS.l) 

in which nt is a row vector whose elements represent the demographic projection 
values at time t and Qt_x is a square matrix of transition probabilities for the 
interval (i - 1, i), which take the form: 

nt = \A{f)   R{t)   I{i)    W{t)   0[t)] 

{aa)     n{ar)     n{aï)      n{aw)      Áao^ 

Qt 

1 
0 

0 0 

0 
/•••) 

0 0 0 
0 0 0 

1 

1 

T 
(rw) (ra) 

(¡w) [io] 

3(wiv) 

0 
0 

The elements of the matrix and the symbols have the following significance: 

pjr' denotes the probability of remaining in the same status r; 
q^s' denotes the probability of transition from status r to status s; 
a, r, i, w, and o respectively represent active lives, retirees, invalids, widows/ 
widowers and orphans. 

The above procedure, however, is not applied at the level of total numbers in 
the subpopulations. In order to improve precision, each subpopulation is sub- 
divided at least by sex and age. Preferably, the active population would be 
further subdivided by past service. The procedure is applied at the lowest 
level of subdivision and the results aggregated to give various subtotals and 
totals. The matrix Q will be sex-age specific; it can also be varied over time if 
required. As regards survivors, an additional procedure is required after each 
iteration to classify new widows¡widowers and orphans arising from the deaths 
of males¡females aged x according to the age of the widow¡widower {y) or of 
the orphan (z) before proceeding to the next iteration. 

5.5    DATA FOR DEMOGRAPHIC PROJECTIONS 

For the initial covered pppulation, data on the date of valuation giving the 
sex-age breakdown of each of the subpopulations (active persons, retirees, inva- 
lids, widows/widowers and orphans) will provide the starting-point for the itera- 
tion procedure. As regards active persons on the valuation date, a distribution 
by past service within each sex-age group is desirable, if this can be expected to 
improve significantly the precision of the projections. It might be possible to 
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adopt an ad hoc distribution of the active population around the average past 
service if, for example, the variance of the distribution can be estimated or 
assumed. 

A practical problem concerns variations in the definition of "age". The 
possibilities include age last birthday, age nearest birthday and age next birth- 
day. In this chapter, the procedures correspond to the definition age nearest 
birthday. This is for illustrative purposes only, and does not preclude the 
adoption of other age definitions which may be more suitable or convenient 
depending on the circumstances. Data provided according to any of the other 
definitions may be converted, by interpolation, to correspond to the definition 
adopted in this chapter; alternatively, the projection formulae could be adapted 
to suit the specific age definition of the data. 

A second question concerns the reference period for the data. Generally an 
actuarial valuation is carried out as at the end of a financial year of the 
scheme. In this chapter, it is assumed that the data concerning beneficiaries 
relate to those in receipt of a pension on the valuation date, whereas the 
data concerning active insured persons relate to those who were credited 
with at least one contribution in the financial year preceding the valuation 
date. Either data set is assumed to be classified according to the nearest age 
on the valuation date. 

With regard to future entrants into the scheme, it would be unusual to be 
able to make assumptions concerning their actual numbers by sex and age. 
Two variants are considered : 

Variant (a): (based on ILO-PENS, 1997): The expected total active insured 
population - by sex and age - in future years is provided exogenously, that is, 
based on national population or labour force projections. 

Variant (b): Indications are provided of the expected rate of growth of the 
total active insured population in each projection year, together with the relative 
sex-age distribution of the corresponding new entrants; often, the same sex-age 
distribution is assumed for all new entrant generations. 

In either case, the actual new entrants of each projection year, by sex and 
age, would be deduced indirectly. New entrants are assumed to enter at the 
middle of the financial year. For consistency with the age definition adopted 
in this chapter for the valuation data (age nearest birthday), new entrants are 
classified by age next birthday at entry. 

5.6    THE ACTUARIAL BASIS FOR DEMOGRAPHIC 
PROJECTIONS 

For carrying out the demographic projections it is necessary to adopt a basis, 
consisting of the elements listed below. They should be understood to be sex 
specific. For brevity, time is not indicated as a variable, but some or all of the 
bases may be varied over time. 
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(a) The active service table {l"}, b < x <r, where b is the youngest entry age 
and r the highest retirement age. This is a double decrement table allowing 
for the decrements of death and invalidity only. The associated dependent 
rates of decrement are denoted by *q" (mortality) and *ix (invalidity). 
Retirement is assumed to take place at exact integral ages, just before 
each birthday, rx denoting the proportion retiring at age x. 

(b) The life table for invalids {llx}, b < x < u> and the associated independent 
mortality rate ql

x. 
(c) The life table for retired persons, {lx}, r* <x <u> (where r* is the lowest 

retirement age), and the associated independent rate of mortality qp
x. 

(d) The double decrement table for widows/widowers, {/*}. J* < 7 < w (y* is 
the lowest age of a widow/widower), and the associated dependent rates of 
decrement, *q• (mortality) and *hy (remarriage). 

(e) The single decrement table for orphans, {/"}, 0 < z < z*, where z* is the 
age limit for orphans' pensions and the associated independent rate of 
decrement q0

z. 
(f ) wx, the proportion of married persons among those dying at age x. 
(g) yx> the average age of the spouse of a person dying at age x. 
(h) nx, the average number of orphans of a person dying at age x. 
(i) zx, the average age of the above orphans. 
( j) P(0 > t^16 growth rate for the number of active insured persons in projection 

year t. This applies to variant (b) of section 5,5 only. 

With regard to widows/widowers and orphans, it will be noted that average 
ages - corresponding to a given age x of the insured person - have been indi- 
cated. This does not exclude recourse to age distributions of widows/widowers 
and orphans, for increased precision (Boye, 1971; Picard, 1971). Further, the 
proportions and average ages indicated at (f), (g), (h) and (i) are taken as applic- 
able to all categories of deceased - active person, invalid or retiree - but could be 
varied by category. 

5.7    EXPRESSIONS FOR TRANSITION PROBABILITIES 

The following expressions for the age- (and sex-) specific one-year transition 
probabilities are based on the rules of addition and multiplication of probabil- 
ities. They are consistent with international practice (based on Picard, 1975). 

Each iteration is assumed to operate immediately after the retirements (occur- 
ring at the end of each year of age) have taken place. Under the assumption of 
uniform distribution of decrements over each year of age, the decrements affect- 
ing active persons, retirees and existing invalids - in (5.4), (5.5a), (5.7) and (5.9) - 
are assumed to occur, on average, at the end of six months; new invalids dying 
before the end of the year are assumed to die at the end of nine months (in (5.5b)). 
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Active to active 

^ = (l-^-%)(l-rx+1) (5.2) 

Active to retiree 

¿-) = (l-^-%)rx+1 (5.3) 

Active to invalid 

^^(l-O^Í) (5.4) 

Active to widow/widower 

qir)=q{awl)+qir2) (55) 

¿OTl) = *9>.+o.5[l - 0.5(t< + *^)] (5.5a) 

^ = %k>*+o.75[l - 0.25C^ + XJl (5.5b) 

Retiree to retiree 

pP = l-qp
x (5.6) 

Retiree to widow/widower 

q^ = 9>x+o.5[l - O.SC^ + XJ] (5.7) 

invaiid to invalid 

^ = 1-^ (5.8) 

Invalid to widow/widower 

?f) = 9>x+0.5[l - 0.5(*^ + '^J] (5.9) 

Widow/widower to widow/widower 

p(•) = l-*q»-*hx (5.10) 

It will be noted that equation (5.5) has two components: (5.5a) relating to 
deaths of active insured persons in the age range {x,x+ 1); and (5.5b) relating 
to active persons becoming invalid and then dying by age x + 1. It is understood 
that the values of wx corresponding to fractional ages which occur in the above 
formulae would be obtained by interpolation between the values at adjacent 
integral ages. Expressions for transition probabilities concerning orphans, 
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corresponding to (5.5a), (5.5b), (5.7), (5.9) and (5.10), can be derived on the 
same lines as for widows/widowers. 

Remark: With regard to the survival factor after the transition of status - in 
(5.4), (5.5a), (5.5b), (5.7) and (5.9) - strictly speaking, a correction is required in 
order to be consistent with the assumption of the uniform distribution of decre- 
ments. For example, formula (5.4) assumes that the probability of death of an 
invalid, aged x-\- t,in the fractional interval {x + t,x+\) can be expressed as 
(1 — t)ql

x. This implies, however, that in the interval (x, x + 1), 

_L-izi     t 

which has the somewhat illogical consequence of a decreasing force of mortality 
in the interval. The more logical, linear, assumption 

4+; = (l-?)/* +4+i 

would lead to the following result for the probability of death of an invalid, aged 
x + t,m.{x + t,x+ 1): 

(1 - tW; 
l-Wx 

Such a correction may be introduced, if desired, leading to the following expres- 
sion for the transition probability: 

tx ' = 1-0.5^ 

In practice the simpler expression (5.4) might, however, be adequate. This also 
applies to formulae (5.5a), (5.5b), (5.7) and (5.9). 

5.8    THE DEMOGRAPHIC PROJECTION FORMULAE 

Starting from the population data on the date of the valuation (i = 0), provided 
as indicated in section 5.5 above, the transition probabilities are applied to 
successive projections by sex and age (and preferably by past service, in the 
case of the active population). In the case of the active population projection, 
new entrants of the immediately preceding year have to be incorporated 
before proceeding to the next iteration. The projection formulae for the active 
insured population are given below; the method of projecting the beneficiary 
populations is illustrated with reference to retirement pensioners. 

Notation 

•    Act{x, s, t) denotes the active population aged x nearest birthday, with curtate 
past service duration s years, at time t;b <x <r,s>Q. 
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• Ac{x, i) denotes the active population aged x nearest birthday at time t. The 
corresponding beneficiary populations are denoted by Re{x, t), In{x, t) and 
Wi{x,t). 

• A{t) denotes the total active population at time t. The corresponding benefi- 
ciary populations are denoted by R{t), /(/) and W{t). 

• The number of new entrants aged x next birthday in the projection year t, that 
is, in the interval (i - 1, i), is denoted by N{x, t). 

Active population projections: variant (a) 

The projection of the active population from time í - 1 to time t is expressed by 
the equation 

Act{x,s, t) = Act{x - 1, J - 1, í - l)p{•\ (5.11) 

where b+l < x < r, s>l. This assumes that the benefit density, that is, the 
proportion of the potential period of service in the age interval {x— l,x) 
which is effectively reckoned for pension purposes - see (f) under section 
5.11, below - is unity. More generally, ii db denotes this benefit density, 

Act{x,s,t) = [dbAct{x-l,s-\,t-l) + {\-db)Act{x-l,s,t-l)]p{•\      (5.12) 

In this variant, Ac{x, t) will be given exogenously. The active survivors, at time 
t, of the new entrants during the year (i - 1, i) will then be given by 

Z(x, t) = Acix, t) -Y^Act{x,s, 0 - (1 - db)Act{x - 1.0, t - l)p{°a]x (5.13) 

where b < x <r and the summation extends from í = 1 to the upper limit of s. 
It will be noted that the last term in (5.13) will not occur if the density is unity 
and in that case Act{x, 0, t) = Z(x, i). Otherwise, 

Act{x, 0, /) = Z(x, /) + (!- db)Act{x - 1,0, í - l)^ (5.14) 

These new entrants are assumed to have entered at the middle of the year. 
The actual number of new entrants, at age x next birthday, can be estimated 
by reverse projection as 

N^t)=^L (5-15) 
^-0.5:0.5 

The factor in the denominator is analogous to p^f1' but refers to the age interval 
(x — 0.5, x) and has the expression 

^0.5:0.5 = (1 " 0.5r^-i + Vi))(l - rx) (5.16) 
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Active population projections: variant (b) 

Act{x, s,t){oT b + l < x < r,s > I, is projected as in variant (a) - see (5.11) and 
(5.12). 

In this variant, the rate of increase of the total active insured population, 
/o(i), is given. The total active population at time t is first projected by the 
formula 

A{í)=A{t-l){l+p{í)) (5.17) 

In this variant, the proportionate age distribution of new entrants by age 
next birthday at entry, pr{x), is also given. Z(x, t) is then estimated by the 
formula 

,      A{t)-Y,y{i:s>oAct{y,s,t) + {\-db)Act(y-\,Q,t-\)p^\) 

2ZyPriy)Py-a.5:0.i 

xM^ko.s (5-18) 

The summations in the numerator run respectively over the relevant age range 
and over s>\. Act{x, 0, t) and N{x, t) are then computed as in variant (a) - see 
(5.14) and (5.15).. 

Remark: In the above development, it has been assumed that Z(x, i) is 
always positive. If negative results are obtained for Z{x, t) and therefore for 
N{x, t), this may be interpreted as signifying that there are no new entrants 
but that, on the other hand, \N{x, i) \ active insured persons withdrew from 
the active insured status. This would correspond to the situation where there 
is a significant latent covered population, possibly with deferred pension 
rights, not currently contributing but potentially able to revert to contributory 
status. The projection model can be adapted to this situation by treating this 
group as a distinct subpopulation and projecting it separately with assumed 
rates of re-entry into active contributory status. This is, however, not pursued 
further in this chapter. 

Beneficiary population projections 

The projection procedure for the various beneficiary populations is illustrated 
below with reference to retirement pensioners: 

(a)    retired population aged x at time t: 

Re{x, t) = Re{x - 1, Í - l)/^ + Ac{x -l,t- l)q^ + N{x, t)q^05:05       (5.19) 

where the last projection factor is analogous to q^ but relates to the age range 
(x — 0.5, x) and has the expression 

^0.5:0.5 = (1 -O.Sr^., +%_,))/•, (5.20) 
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(b)    total retired population 

R{t) = '^2Mx,t) (5.21) 
X 

where x> b and the summation extends from b + I to u. 
Remark: It has been implicitly assumed that all new retirees, the second and 

third elements oí Re{x, t) - see (5.19) - are entitled to retirement pensions. If a 
qualifying condition - in terms of a minimum service period - applies, the 
second element should be analysed into its components, that is, expressed as 

s 

and only those components included which would qualify for pension. Simi- 
larly, the third element of Re{x, t), which would have only half-a-year or less 
of service, would be excluded under the operation of qualifying conditions, if 
applicable. This remark is equally valid for the projections of invalidity and 
widows'/widowers' pensions. 

5.9    FINANCIAL PROJECTIONS: GENERAL DESCRIPTION 

After the demographic projections - as described in section 5.4, above - are 
completed, the next step is the production of estimates of the total annual 
insured salary bill and of the total annual amounts of the different categories 
of pensions "in force" at discrete time points (i = 1,2,...) starting from 
given initial values at t = 0. These aggregates are obtained by applying the 
appropriate per capita average amounts (of salaries or of pensions, as the 
case may be) to each individual element of the demographic projections and 
then summing. The average amounts are computed year by year in parallel 
with the progress of the corresponding demographic projection. An average 
per capita amount (salary or pension, as the case may be) is computed for 
each distinct population element generated by the demographic projection; if 
different elements are aggregated in the demographic projection - for example, 
existing invalids surviving from age xtox+\ and new invalids reaching age 
x + 1 at the same time - a weighted per capita average amount is computed 
to correspond to the aggregated population element. 

Two different methods will be described below in regard to the projection of 
the insured salary. 

Method 1: The first method, which is classical, refers to age- and time-related 
average salaries which are projected, allowing for the progression of each 
cohort's average salary according to an age-related salary scale function and 
taking into account the escalation of the general level of salaries, but the 
method assumes an invariant salary scale function. Although the starting 
salaries of new entrant cohorts could be varied, this method does not permit 
the adequate modelling of the variation over time in the age-wise salary 
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structure of the active population. Nor does it allow the salary distribution at 
each age to be taken into account. 

Method! (based on ILO-DIST, 1996): This method begins by modelling a 
variation over time in the age-related average salary structure, and then 
computes age- and time-related average salaries allowing for general salary 
escalation. Further, it models the salary distribution by age, which can increase 
the precision of the financial projections. 

5.10 DATA FOR FINANCIAL PROJECTIONS 

For the initial active population, the starting data will consist of the sex-specific 
average insured salary at each age x, denoted by ^(x, 0). It is assumed that 
the salaries relate to the annual rates of salary "in force" on the date of the 
valuation, that is, the potential salary corresponding to full-time work over 
one whole year. 

In addition, for the application of method 2 a salary distribution at each 
age of the initial population would be required. Alternatively, an indication 
of the coefficient of variation of this distribution - denoted by cv{x) - should 
be provided. 

The salary may refer to the total salary, or to the salary relevant to the social 
security pension scheme, that is, the salary subject to a specified threshold and/ 
or ceiling. In the former case, a "catchment factor" should be applied to derive 
the relevant salary. It is assumed in this chapter that the reference is to the total 
salary. 

For pensioners existing on the valuation date, sex-specific average annual 
pension amounts "in force" at each age and for each category of pensioner 
will be required. 

Another datum for the financial analysis is the accumulated reserve fund on 
the valuation date, denoted by Fd{0). 

5.11 THE ACTUARIAL BASIS FOR FINANCIAL 
PROJECTIONS 

The basis for the financial projections would comprise assumptions in regard to 
the following elements. They are specified as functions of age or time; the age- 
related elements should be understood to be sex specific and may be further 
varied over time, if necessary. 

(a) For method 1: the age-related salary scale function: sx. 
For method 2: The factor indicating the change in the age-wise average 
salary structure X/). 

(b) The rate of salary escalation in each projection year: 7(i). 
(c) The rate of pension indexation in each projection year: /?(/). 
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(d) The rate of investment return in each projection year: i{t). 

(e) The contribution density, that is, the fraction of the year during which 
contributions are effectively payable, dc{x). 

(f ) The benefit density, that is, the fraction of the potential period of service 
which will effectively be reckoned for pension purposes, db{x) - which may 
exceed dc{x) due to crediting of non-contributory periods. 

5.12    THE FINANCIAL PROJECTION FORMULAE 

Projection of average salaries: Method 1 

The basic formula for the projection of the average salary of any cohort, aged x 
in year t, starting from the average salary a year earlier, is 

Sal{x,t)=s{x-l,t-l)-^{l+'y{t)) (5.22) 
sx-l 

s{x, t), which denotes the average salary of the whole active population aged 
x nearest birthday at time t, would be obtained by taking the weighted average of 
the salary of the cohort surviving from t - 1 and that of the new entrant cohort 
entering in the year {t - \,t), assumed to enter at age x next birthday at the 
middle of the year. For the latter group, the average salary at the end of the 
year of entry, denoted by sn{x, t), is taken as 

sn{x, t) = s{x - 0.5,0)[7ri (1 + 7(2))] —^ (5.23) 
sx-Ü.S 

Projection of average salaries: Method 2 

The initial relative salary function, denoted by ss{x,ÇÎ), which indicates the 
relative levels of age-wise average salaries at í = 0, is established by expressing 
the average salary at age x as an index - with, say, 1,000 at the youngest age b - 
as follows: 

M(x,0) = 1000^1 (5.24) 

The relative salary function for projection year t is then computed by the 
formula 

ss{x,t) = ss{x— l,i) 
ss(x, 0) 

ss{x — 1,0) 

j(t) 
(5.25) 

It will be noted that a value of the adjustment factory^) greater/smaller than 
unity implies a widening/narrowing of the variation of the average salary by 
age. If 7(0 = 0J the average salary becomes the same at all ages. 
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The average salary at age x in projection year t is then computed by the 
formula 

s{x> t) = ssix, Od + 7(0) ^sjyt-DMyJ-l)     ^ AcM 

where Ac(y, t) denotes the projected active population aged y at time t. 
The total insured salary bill "in force" at time t would be estimated as 

,}2xAc{x,t)s{x,i)dc{x). As mentioned in section 5.10 above, a "catchment 
factor" should be applied if s{x, i) refers to the total salary and not to the 
insured salary. 

Projection of salary distributions 

Depending on the pension formula, the precision of the benefit expenditure 
projections can be improved by using salary distributions. 

The salary distribution at any age x is assumed to be lognormal (ILO-DIST, 
1996). This means that the natural logarithm of the salary is normally distri- 
buted. Let y denote the salary and let z — loge y. Let Hy and /iz denote the 
respective means and u2y and al the respective variances. These parameters 
are connected by the relationships 

^ = 6^+^ (5.27) 

The average salary having been already projected, ^y = s{x, t). If the co- 
efficient of variation oí y is assumed to be invariant at the initial value cv{x), 
then <Ty = cv{x)s{x,t). The parameters of the distribution of z can then be 
computed as follows by reversing the above formulae: 

^=10^—=^=^ (5.29) 
^l+cv{x)2 

4 = \oge{\ + cv{xf) (5.30) 

It can be shown (see Appendix 6) that the average salary of the population 
between any two salary levels, say ya and y h , is given by 

^      $K)-$K) (5-31j 

where $(w) is the distribution function of the standard normal varíate, 
wfl = (logera - tiz)/(Tz and wb = (loge;;¿, - Atz)M- 

In practice, the active population at each age, Ac{x, t), would be partitioned 
into a limited number of groups according to salary level. For example, three 
groups may be used: 
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(a) the low income group (the lowest 30 per cent of the population); 
(b) the middle income group (the middle 40 per cent); 
(c) the high income group (the highest 30 per cent); 

Let sl{x, t), s2{x, t) and s'i{x, t) denote the respective average salaries. First, 
the values Wi and W2 are determined such that ${wi) = 0.3 and $(w2) = 0.7. 
The average salaries are then given by 

s\[x,t)=s{x,t)^^- (5.32) 

^,,)^.,)%:;í::J::P)       ,5,33, 

Projection of benefit expenditure 

As explained in section 5.9, an average per capita pension amount should be 
determined for each distinct beneficiary population element in the correspond- 
ing demographic projections. A weighted average per capita pension amount is 
then computed for those elements which are amalgamated at any particular 
stage in the projection process. This is illustrated below with reference to retire- 
ment pensions. 

Let b{x, i) denote the average per capita pension amount of the Re{x, t) 
retirement pensioners aged x at time t. From equation (5.19), it is seen that 
Re{x,t) is constituted by amalgamating three distinct elements. The per 
capita pension amount appropriate to each element should therefore be 
determined and a weighted average then taken. 

The per capita pension amount of the first element would be determined as 

b{x,t)=b{x-\,t-\){\+p{t)) (5.35) 

The second element of i?e(x) i) relates to those retiring out of the active 
population aged x—\ one year earlier, that is, Ac{x — 1,í — 1). The simplest 
case is where a distribution by past service is not used but computations are 
based on the average past service of cohorts. Let the average contributory 
service of the Ac{x — l,t— 1) persons be denoted by sv{x— l,t— 1). The 
service after one year of this group would be projected as 

sv{x, i) = sv{x - 1, f - 1) + db{x - 0.5) (5.36) 

Under the assumptions made, the retirements take place at the end of each 
year of age. If the pension is based on the salary at retirement, and method 1 
applies, the reference salary would be Sal{x, t) - see (5.22). If, for example, 
the pension formula is 1 per cent of the final salary per year of service, the 
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pension amount per head would be given by 

sv{x, t) 
100 

Sal{x, t) (5.37) 

If method 2 applies, the second element of Re{x, t) would be regarded as 
being constituted of three subgroups with average salaries s\{x,t), s2{x,i) 
and s3{x, t) - see (5.32), (5.33) and (5.34); the pension amount would then be 
computed for each subgroup, and a weighted average taken. If, in addition, a 
distribution by past service is available, Ac{x, f) would be regarded as con- 
stituted by first-level subgroups Act{x,s,t) - see (5.11) - according to past 
service s, each first-level subgroup being constituted by three second-level sub- 
groups according to the level of the salary. (This ignores the correlation between 
salary level and past service, if any, but ad hoc adjustments may be possible in 
specific instances.) A per capita pension amount would be computed for each 
second-level subgroup and then a weighted average taken over all second- 
level subgroups. Such detailed analysis may not be justified in the case of a 
simple pension formula such as the one in (5.37), but if the formula is more 
complex - involving minimum or maximum percentage rates or varying rates 
of accrual, or being subject to minimum or maximum amounts - such analysis 
could significantly improve the precision of the projections and would therefore 
be justified. 

The third element of Re{x, t) corresponds to retirements arising out of the 
new entrants of the immediately preceding year (i — \,t). This group would 
have a past service of half-a-year or less. The salary will be taken as sn{x, t) 
under method 1 - see (5.23) - and as identical to that of the second element 
under method 2. 

It is understood that if the various projected average salaries refer to the 
total salary, appropriate "catchment factors" should be applied at each stage 
to estimate the corresponding average insured salaries. 

5.13    AN ALTERNATIVE PROJECTION METHOD UNDER 
SIMPLIFIED ASSUMPTIONS 

In certain circumstances, it will be sufficient to produce projections for a single 
generation of new entrants from which the combined result for all new entrant 
generations can be obtained by a process known as binding. This is then com- 
bined with a separate closed-fund projection relating to the initial population, 
to obtain the required open-fund projections. 

Demographic projections 

The projection exercise pertaining to a typical generation of new entrants might 
relate, without loss of generality, to a standard population of 100,000 new 
entrants assumed to enter on the valuation date. Let the projected total active 
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population at duration z be denoted by IA{z) for the initial population projec- 
tions and by NA{z) for the standard projection of the new entrant generation. 
Given the rate of increase of the active population in each projection year p{z), 
the actual number of new entrants, na{z), assumed to enter at the middle of the 
year, is deduced by equating two different expressions for the active population 
at the end of projection year t (Picard, 1979): 

IA{ü)Í\{\+p{z))=IA{t) + Yd^^NA{t-z + Q.5) (5.38) 
Z=I z=l ' 

If the projection period is n years, there will be n such equations 
(i = 1,2,... ,n) which can be solved successively for the numbers na{t). For 
example, the number of new entrants in the first projection year is given by 

na{x)jAm^mzimmm (5,9) 

In (5.38), the value of NA{t — z + 0.5) would be obtained by interpolation 
between NA{t — z) and NA{t — z + Í). After solving for na(z), z = 1,2,..., n, 
these values will be used to derive the projections of the beneficiaries of various 
types of pensions. For example, if IR{z) denotes the number of pensioners at 
duration z in the initial population projection and NR{z) denotes the 
corresponding number resulting from the standard projection of 100,000 new 
entrants, the total number of pensioners at the end of the ith year of projection 
deriving from the initial population, as well as from the new entrants of the first 
t years, is given by 

ri?(i)=MW + CI^^(i-z + 0.5) (5.40) 

In (5.40), the first component on the right-hand side represents the pen- 
sioners arising from the initial population, while the second member represents 
the pensioners arising from new entrants entering during the first t years, both as 
at the end of the tth year of projection. 

Financial projections 

Let the projections of total salaries for the initial population and for the 
standard generation of new entrants be denoted by IS{t) and NS{t) and the 
projections of total pensions by IP{t) and NP{i). 

The total insured salaries at the end of the t1 year of projection deriving 
from the initial population and from the new entrants of the first ; years is 
given by 

TS{i) = IS{t) + ¿ T^- NS{t - z + *.S)ADJ{z) (5.41) 
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where ADJ{z) is an adjustment factor given by 

^(-)     n^-z+i(l+7(r)) ( 

It will be noted that ADJ{z) provides the additional salary escalation 
required to bring NS{t - z + 0.5) up to the general level of salaries as at the 
end of the ith projection year. 

Under the condition that (1 + 7(2)) bears a constant ratio - independent of z 
- to (1 + /3(z)), a similar formula can be used to estimate the total pensions at the 
end of the tx year of projection, using the same adjustment factors. Thus, 

TP{i) = IP{t) + ¿-^M-iViV - z + Q.S)ADJ{z) (5.43) 
z=l 100,000 

It should be noted that if the above condition is not satisfied, it will, in 
general, not be possible to apply a simple formula such as (5.43). 

5.14    MANIPULATION OF FINANCIAL PROJECTIONS FOR 
VALUATION PURPOSES 

Based on the given (initial) and the projected values of total annual insured sal- 
aries and of total annual amounts of pensions "in force" at the time points 
í = 0,1,2,..., «, the respective aggregates for the projection years 1,2,..., K 
would be obtained by a numerical integration method. A margin for costs of 
administration would be added to the projected benefit expenditures. Let the 
projected amounts of insured salaries and of total expenditure (including 
administration) for the /th projection year be denoted by St and Bt, 
t = 1,2,...,«. 

It is often useful to discount the above aggregates to the date of the valua- 
tion. The discounted values are denoted by DSt and DBt. For example, 

DSt = [n^i(i+¿«)jv(i+¿w) (5'44) 

The discounted values are then accumulated, starting with the first year, to yield 
the totals of discounted salaries and benefits, denoted by TDSt and TDBt. For 
example, 

t 

TDSt = ^DSr (5.45) 
r=l 

In valuations of ongoing schemes, the main interest would be in testing the 
adequacy of the existing financing arrangements. Typically, this will require 
testing whether a specified schedule of the contribution rates Ct for the n 
years following the valuation will lead to a pattern of accumulation of the 
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reserve fund which will satisfy a predetermined criterion such as: 

(a) exceed at the end of each financial year a given proportion of that year's 
pension expenditure; or 

(b) satisfy a certain growth pattern (e.g. at no stage suffer negative growth). 

To carry out the above test, it would first be necessary to project the growth 
of the reserve fund, denoted by V{t), starting from the initial value, Fd{0). This 
is accomplished by the repeated application of the following recurrence formula 
(for t—l,...,ri): 

V{t) = V{t - 1)(1 + ¿(0) + \CtSt - «rVl + iW (5.46) 

When carrying out an initial valuation, preceding the introduction of a 
pension scheme, alternative financial systems will need to be modelled. This 
would also apply to an ongoing scheme if a change in the existing financial 
arrangements is being considered. The computations are illustrated for selected 
financial systems, below. 

For the pay-as-you-go system, the projected contribution rate for the ith 

financial year is given by 

PAYG, = ^ (5.47) 

As regards the other financing methods for social security pension schemes 
discussed in Chapter 1, the continuous formulae developed in that chapter can 
be adapted to the discrete case by replacing the integrals 

B{t)e-S'dt   and S(i)e-Ôtdt 

occurring in the formulae by TDBm - TDB„ and TDSm - TDS„ respectively. 
Further, the functions B{m)e~6m and S{m)e~6m which also appear in the 
formulae will be obtained by interpolation between the projected values for 
the m1 and m + 1th financial years. The procedure is illustrated for selected 
financial systems, below. The valuation date is taken as the origin of the time 
axis. 

The general average premium - see formula (1.13) of Chapter 1 - can be 
computed provided the projections are continued until the time when financial 
maturity is reached. Suppose maturity is reached by the nth projection year. Let 
f, p* and 7* indicate the eventual (constant) values of the investment return, 
new entrant growth and salary escalation factors, where, for obvious reasons, 

l + r>(l+p*)(l+7*) 

and let 

(1+^(1+7*) 
(i+n 
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The GAP, taking into account the reserve fund on valuation date (i = 0), is then 
given by 

where k = 1/(1 — v). 
The scaled premium corresponding to an initial period of m years following 

the valuation date (i = 0) - see formula (1.32) of Chapter 1 - can be computed 
as 

,n    ,     VDBmDBm+1 + ¿mTDBm - 6mFdiO) 
•K{0,m)=-  =  (5-49) 

yDSmDSm+i + 6mTDSm 

where the geometric interpolation method has been used. 
6m may be approximated by 

5m=loge(l+/(w)) (5.50) 

The accumulated reserve fund, at the end of the period, starting from the initial 
reserve of .FJ(O) - see formula (1.5) of Chapter 1 - will be given by 

Vim) = [FdiO) + 7r(0,m)TDSm - TDB„ flil+Kr)) (5.51) 
Lr=l 

An alternative expression - based on formula (1.31) of Chapter 1 - is 

Vim) = VBmBm+1 - ^(O. m)^SmSm+ ! 

The interpolation has again been based on the geometric method. 
The formulae pertaining to the other financial systems can be similarly 

adapted for the purposes of computation. 
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6.1    INTRODUCTION 

This chapter deals with the second of the two techniques for the analysis of 
pension schemes. This technique considers one cohort of insured persons at a 
time and computes the probable present values of the future insured salaries, 
on the one hand, and of the pension benefits payable to the members of the 
cohort and to their survivors, on the other. 

This technique is naturally suited to the valuation of occupational pension 
schemes, which, as was seen in Chapter 2, are generally fully funded. This is 
not the case with partially funded social security pension schemes, for which 
the projection technique is the appropriate valuation technique. Nevertheless, 
the present value technique can provide additional financial insight and can 
therefore be a useful adjunct to the projection technique. The present value 
technique has already been introduced in Chapter 2, but in its continuous 
form and as regards retirement pensions only. Equation (2.12) in fact represents 
the level contribution rate K{b), resulting from equating, for a cohort entering 
at age b and retiring at age r, K{b) times the probable present value of future 
salaries to the probable present value of future retirement pensions. 

In what follows, discrete approximations to the continuous commutation 
functions will be developed, in order to permit practical application of the 
theory. The treatment will be extended to invalidity and survivors' benefits. 
Reference will be made to the same demographic and financial bases as for 
the projection technique, detailed in sections 5.6 and 5.11 of Chapter 5. How- 
ever, certain simplifications in the bases are adopted. First, the variation over 
time of the economic bases will not be considered. Thus 7(í), /3(i) and 6{t) 
are assumed constant, and "interest" rates i and 7 and corresponding discount- 
ing factors are introduced where 

v = -r— (6.1) 
1+7       ' 1+i 
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Second, the density factors dc and db are taken as unity at all ages. Finally, 
only a single retirement age r will be modelled, b being the youngest entry 
age. 

The present value formulae will be developed for the simple case where 
the pension (for retirement or invalidity) accrues at 1 per cent of the final 
salary per year of service. For a more general treatment, reference should be 
made to an actuarial textbook on occupational pensions (for example, Lee, 
1986). 

The surviving spouse's pension is denoted by a proportion RWP of the 
actual or potential pension of the deceased, and each orphan's pension by a 
proportion ROP of the deceased's pension. 

6.2    SPECIAL COMMUTATION FUNCTIONS 

A series of (sex-specific) special commutation functions are needed for applying 
the present value technique. These are based on one or other of the decrement 
tables mentioned in section 5.6, or on combinations of them. Functions based 
on the active service table will be computed at interest rate i, while those 
based on the other tables will be computed at rate/ 

Functions based on the active service tabie (b < x < r) 

Z)? = /X (6.3) 

D7 = sxD
a

x (6.4) 
nos  i   p,as 

B7=zDx+Dx+l (65) 

iVf=gzJf (6.6) 
t=x 

Functions based on the life table for invalids (£) < x < w) 

Di = /X (6.7) 

ñi_0'x + D'x+l (68) 

(6.9) 

(6.10) 
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Functions based on the double decrement table for widows/widowers 
(y* < y < w) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

Functions based on the active service table and the life table for invalids 
{b<x <r) 

C«; = JD«*/y-5âi+o.5 (6-15) 

CT = Sx+o.sCx (6.16) 

Functions based on the active service table and the decrement table for 
widows/widowers {b < x < r) 

0.0 =       ^     2
X+I y^ (6.17) 

CT=Da
x*(fxGx{y) (6.18) 

C7s = sx+o.sCT (6-19) 

Functions based on the active service table, the life table for invalids and 
the double decrement table for widows/widowers {b < x < r) 

Ax{y) = ^-*   % ^ (6.20) 

CT = Da
x*ixv

(iSAx+0,5{y) (6.21) 

Clxs = sx+o.5Cl
x (6.22) 

Functions based on the life table for retirees {r < x <CJ) 

DP = lpxi/ (6.23) 

ñPX = Er=r(i??+^+i) {624) 

Ñp 

àp
x=^ (6.25) 
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Remark: The above commutation and annuity functions relate to con- 
tinuously payable salaries and pensions, and may be adequate if payments 
are made frequently, for example weekly. They can be adjusted to correspond 
more exactly to any specific payment schedule. For example, if pensions 
are payable monthly and in arrears, (6.10) should be replaced by (see 
Appendix 1) 

a--(12W+li = M±i + li 
* + 24      Di      24 

with similar expressions in (6.14) and (6.25). 

6.3 EXPRESSIONS FOR PROBABLE PRESENT VALUES OF 
INSURED SALARIES AND BENEFITS 

The following expressions relate to a cohort, of a specific sex, aged x on the date 
of valuation and refer to a unit insured salary on that date. The expressions for 
orphans are not indicated but can be derived on the same lines as for widows/ 
widowers. 

Present value of insured salaries {b < x < r) 

fjis _ fias 
PVSW=^—^ (6.26) 

Present value of retirement pensions 

Das 

PVRW =/;(., x)-^^ (6.27) 

where p{r, x) denotes the retirement pension of the cohort aged x as a propor- 
tion of the final salary. 

Present value of invalidity pensions (b < x < r) 

pVIW = Ei£i^)çr í628) 

where ;?(?, x) denotes the invalidity pension as a proportion of the salary, for an 
entrant at age x, if invalidity is attained in the age (í, í + 1). 

Present value of widows'/widowers' pensions (death in service) 
{b<x<r) 

PVW1M = RWP ^'=x;^;X)C'"W (6.29) 
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Present value of widows'/widowers' pensions (death after invalidity) 
{b<x<r) 

PVW2(x) = RWP^'=*^;;   ;   ' (6.30) 

Present value of widows'/widowers' pensions (death after retirement) 

PVW3(x) = RWPpM)^ E'=f^yG'M (6.31) 

6.4    FURTHER DEVELOPMENT OF THE EXPRESSIONS FOR 
A SIMPLE PENSION FORMULA 

The above expressions, particularly (6.28) to (6.30), can be developed further for 
any specific pension formula. This is illustrated below for a simple formula 
where the pension accrues at 1 per cent of the final salary per year. If ps{x) 
denotes the past service on valuation date, 

,     ,     ps(x) +r — x        ,      .     ,     ps(x) + t — x + 0.5 p{r. x) = —   ——     and   pit, x) = í—^ —  y\ >  ; 100 PK,  J 100 

PV1M=j^ti£ijg^Sjg! (,32) 

where 
r-l 

Mf=Y,cfs (6-33) 
t = X 

r-l 

Rf = E^ (6-34) 
t = x 

where 

PvwiW = RWP^i±^±^r (6,5) 

Mr = Y^cr (6J6) 
t = x 

r-l 

i?r = E^r (6.3?) 
t = x 

PVW2W = RWP^i±^±M^ (6.38) 
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where 
r-l 

Mr=^Cr (6.39) 
t = x 

r-l 

i?r=^Mr (6.40) 

6.5    CALCULATION OF AVERAGE PREMIUMS 

The application of the present value method is illustrated in this section for 
computing the average premiums API and AP2, respectively for the initial 
population and new entrants, and the general average premium, GAP, for a 
new pension scheme. For simplicity, only one sex is considered; it should be 
understood that in practice, the results for males and females would need to 
be pooled. 

Let Ac(x, 0) denote the initial population aged x on the valuation date and 
s{x, 0) the average insured salary of this population. Let pr{x) denote the pro- 
portion of new entrants entering at age x - assumed to be the same for all new 
entrant generations; let na(t) denote the number of new entrants in the ith year 
{t — l,t), assumed to enter at the middle of the year; and let sn{x) denote the 
average insured salary of a standard generation of new entrants entering on 
the valuation date. Let the probable present values - corresponding to unit 
initial salary - of salaries and total pensions (all categories combined) relating 
to the initial population be denoted by PVSl(x) and PVBl(x), and the corre- 
sponding quantities for the standard new entrant generation be denoted by 
PVS2(x) and PVB2(x). The average premiums for the initial population and 
for new entrants will then be given by 

^pj _ Z^X=A^V-'-I";-
)
V*-I"^ IMJL^J ,g ^j. 

^P2 _ ¿^c=6/"WJ"Wx ^_u^w /6 42) 

E;=Uc(^0Mx,0)PVBl(x 
C=UC(X,0)í(^0)PVS1W 

j:r
x-Jbprix)Sn{x)PyB2{x) 

E;=lM^«WPVS2(x 

If the above expressions are abbreviated as 

API = Pl/Ql    and   AP2 = P2/Q2 

the general average premium will be given by 

where k is given by 
oo 

k = Y,na{t)v''~0-5 (6.44) 
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and v = 1 / ( 1 + /) - see section 6.1, above. The expression for k can be simplified 
if na(t) is assumed to follow a simple law. For example, if na{t) = 
Ka(l)(l +/)i~1 then the expression will converge, provided 1 +/ < 1 + /, to 

fl + it5 

k = m{l){r
r_' (6.45) 

The above condition for convergence is none other than the well-known 
condition that the rate of interest must exceed the sum of the rate of growth 
of the number of new entrants and the rate of escalation of salaries. 
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APPENDIX    1 

BASIC ACTUARIAL MATHEMATICS 

This appendix provides a brief summary of the principal elements of basic actuarial 
mathematics. It is mainly intended as a source of ready reference. For details, one of 
the standard basic actuarial textbooks should be consulted (e.g. Hooker and Longley- 
Cook, 1953 and 1957; Jordan, 1967; Neill, 1986). 

1    Compound interest 

Interest may be regarded as the reward paid by a borrower for the use of an asset, referred 
to as the capital ox principal, belonging to the lender. It is assumed that both capital and 
interest are measured in units of a given currency. 

Interest may be simple or compound. If a capital of C units is lent at simple interest at 
the rate of i per annum for n years, the accumulated sum at the end of the period will be 
given by 

AS=C{\+ni) (Al.l) 

If, on the other hand, the sum is placed at compound interest, the accumulated sum is 
given by 

AS=C{\ + i)n {Al.l) 

It is the concept of compound interest which underlies the assessment and evaluation of 
investments. Accordingly, in this appendix the references are uniquely to compound 
interest. 

The above definition of compound interest is based on an annual period. Theor- 
etically, it is possible to conceive of an equivalent/orce of interest 6, assumed to operate 
continuously. The relationship between 8 and / can be expressed as follows: 

6 = \oge{\ + i)-       es=l + i (A1.3) 

The symbol v is often used to denote the reciprocal of 1 + /. Thus, 

'    =e-6 (A1.4) 
1 + î 
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An important concept is that of the present value of an accumulated sum due n years 
hence. This refers to the capital which, if lent (or invested) at the rate of i per annum, will 
amount to, say K, at the end of the n-year period. It is given by 

PV = K{\ + i)-n = KJl = Ke-nS (A1.5) 

When the receipt of the accumulated sum K is subject to a probability p, its present 
value is called the probable present value and is given by 

PPV=pKe-"s (A1.6) 

The word "probable" is sometimes omitted if it is evident from the context. 

2    Financial annuities 

Assume that a unit amount is paid at the beginning of each year for n years. This series of 
payments is referred to as an annuity-due. 

The present value of the annuity-due is the sum of the present values of the individual 
payments. It has the following symbol and expression: 

ân = l+v + vl + ---+,r-1 = ]—^- (A1.7) 
V — v 

If the annual payments are made at the end of each year, the annuity is called an 
immediate annuity. It has the following symbol and is related to the annuity-due as 
indicated: 

flH|=wH| (A1.8) 

The accumulated value of an annuity is the sum of the accumulated values of the 
individual payments. For example, the accumulated value of an immediate annuity 
has the following symbol and expression: 

í«| = (1+¿)""
1
 + (1 + ¿)"

_2
 + --- + (1+0 + 1 = (1+¿)"««| (A1.9) 

More generally, an annuity may be payable in m instalments spread evenly over the 
year. Depending upon whether the payment is made at the end or the beginning of each 
fractional period, this annuity is symbolized and evaluated as follows: 

47' = ¿«H, (ALIO) 

I 

where 

¿(m) = w[(l + ¿)1/m - 1] (A1.12) 

For theoretical purposes, it is possible to conceive of a continuous annuity, where a 
unit amount per year is assumed to be invested continuously over the year. The corre- 
sponding present and accumulated values have the following symbols and expressions: 

1 _<,-«« e^_l 
««I =—7—;      í«I =—?— (Ai.13) 
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The life table 

The life table, also known as the mortality table, is a device for exhibiting mortality data 
over the human lifespan. It is represented by the function {lx} indicating the survivors to 
exact integral age x out of a hypothetical initial number of, say, 100,000 newborns. The 
table is said to be subject to a single decrement, that is, death. The range of x is (0,w), 
w representing the limit of life. An auxiliary function is dx, which indicates the number 
of lives eliminated by death between ages x and x + 1. It is given by the relationship 

dx = lx-lx+1 (A1.14) 

The central mortality rate at age x{mx) and the life table mortality rate {qx), the latter 
representing the probability for a person aged x to die within one year, are given by 

2(4 dy       2mx ,., ,,, 
Ix + h+i h     2 + mx 

The complement of the life table mortality rate, representing the probability for a 
person aged x to survive to age x + 1, is indicated by the symbol px and is given by 
the relationship 

px = ljf^=i-qx (A1.16) 

For theoretical purposes, it is customary to assume that lx is a continuous function of 
x. The/orce of mortality at any age x (not necessarily integral), indicated by fix, is given by 

The force of mortality at age x + 0.5 is approximately given by 

^-=r^ (AU8) 

The expectation of life at age x measures the average future lifetime at that age. The 
curtate expectation, denoted by ex, represents the average number of full years lived 
beyond age x while the complete expectation, denoted by e°, represents the average 
exact future lifetime. They are given by the following formulae: 

ex = 
(4+1+/;+2 + ,") (A1.19) 

e" = i x    I 
Ldy (A1.20) 

The complete expectation is approximately given by 

eJ = ex + 0.5 (A1.21) 

4   Elementary commutation functions 

Commutation functions are derived by combining life table functions with compound 
interest functions. They are used for computing life annuity and assurance functions, 
discussed in section 5, below. 
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Commutation functions of level 1, Dx and Cx, are defined as follows (0 < x < w): 

Dx = lxv
x;        Cx = dxv

x+l (A1.22) 

Commutation functions of the second level, Nx and Mx, are obtained by summing 
the corresponding first-level functions, as follows: 

LO U 

Nx = Y,Dy;        Mx = YJCy (A1.23) 
y=x y=x 

Commutation functions of level 3, denoted by Sx and Rx, are obtained by performing 
similar summations of the second-level functions, and so on. 

There are also other commutation functions, used for the theory or the techniques of 
valuation of pension benefits. These are introduced and defined in Chapters 2, 3 and 6. 

5   Life annuities and assurances 

A series of payments of one unit at the beginning of each year, payable so long as a life 
aged x is alive, is called a life annuity-due. The probable present value of this annuity has 
the following symbol, and it can be expressed in terms of the elementary commutation 
functions as indicated: 

¿ix=^ (A1.24) 
*-'x 

If the payments are made at the end of each year, the annuity is termed an immediate life 
annuity. It is denoted by the symbol ax and has the following expression: 

«.=%• (A1.25) 

A life annuity, due or immediate, may be payable in m equal instalments spread 
evenly over the year. It has then the following symbols and the approximate expressions, 

¿4m)=¿¿x-^ (A1.26) 

4m)=«x+^ (A1.27) 

A continuous life annuity is one where a unit per year is paid continuously over the 
year. Its probable present value is denoted as follows and has the approximate expression 

àx = ^ (A1.28) 

where 

ñX=
N

*
+
^ x 2 

If the term of a life annuity is limited to n years, it is termed a temporary life annuity. 
For example, a temporary life annuity-due is denoted by the following symbol and has 
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Similarly, 

®x:n\ 
Nx ~ Nx+n 

^x:n\ 

«x:ñ| = 

Dx 

Ñ* - Ñr + n 

Further, 

(m) 
a

X:ñ\ = a^ñ\ + 

-if") 

D, 

m—l 
2m 

m—l 
2m 

1- 

1- 

Dx + n 

Dx 

Dx 
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(A1.29) 

(A1.30) 

(A1.31) 

(A1.32) 

(A1.33) 

A joint life annuity is one which is payable as long as two lives aged x and y are both 
alive. If it is payable at the end of each year, it has the following symbol and expression: 

_ \^lx+t h+t t 
~ ¿-^ I      I 

(A1.34) 

where t runs from 1 to the end of the period of payment. An annuity payable to a life aged 
y after the death of a Ufe aged x is called a last survivor annuity and has the symbol and 
expression 

axly = a, - axy (A1.35) 

If a unit amount is payable at the end of the year in which a life aged x dies, the 
arrangement is called a whole life insurance. The probable present value of the insurance 
is denoted by Ax and is given by 

M± Ax (.41.36) 

An endowment insurance is given by the expression 

. Mx - Mx+n    Dx+n 
•d-X:ñ\ — ' 

Dx 
- + • 

DY 
(A1.37) 

In this case, the assured amount is paid at the end of the year of death, if death occurs 
within a term of « years, or on survival to the end of the term. An endowment insurance 
is seen to be the sum of a temporary (or term) insurance and apure endowment. If the sum 
assured is payable immediately on death, Mx in the above expressions should be replaced 
by 

Mx + Mx+l 
Mx (A1.38) 

and similarly for Mx+n. 
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6   The multiple decrement table 

A multiple decrement table is similar to a life table except that there is more than one 
decrement to be considered. 

A distinction should be made between the independent and dependent rates of decre- 
ment. The independent rate applies when a decrement is acting alone, while the depen- 
dent rate refers to the case where the given decrement is acting concurrently with one 
or more other decrements. The case of a double decrement table subject to two decrements 
a and ¡3 is discussed below and then generalized to three decrements. 

Let lx represent the number of survivors to age x in the double decrement table, 
*axand 7^ the dependent rates corresponding to the decrements, and a.x and /3X the 
corresponding independent rates. Then the dependent rates can be expressed in terms 
of the independent rates, as follows: 

*ax = ax{\-l3xl2);       *Px = I3X{\ - ají) (A1.39) 

If the independent rates are given, the dependent rates can be calculated using the above 
formulae. The double decrement table functions lx and the auxiliary functions dx and dx, 
indicating respectively the number of exits due to causes a and ¡3 between ages x and 
x+\, can be established starting from a hypothetical number, say 100,000 at the 
youngest age b, using the following formulae successively: 

<£ = '>*;        4 = lx*px;        lx+l=lx-d5-dï (Al.40) 
It will also be apparent that 

/x+i = /.(I - X - %) = /x(l - «x)(l - A) (A1.41) 

The above formulae, expressing dependent rates in terms of the independent rates, 
can be generalized for three decrements a, /3 and 7, as follows: 

with similar expressions for *px and */yx 

Further, 

lx+i = lÁl - X - % - *7*) = Wl - «.)(! - /y (1 - 7x) (A1.43) 

The extension of the multiple decrement theory to further decrements can be made 
on the same lines. 

The active service table is an example of a multiple decrement table. It indicates the 
progress according to age of a cohort of persons covered by a pension scheme, over the 
age range extending from the age of entry (b) to the age of retirement (r). The active 
service table for a social security pension scheme normally allows for two decrements: 
(a) death, and (b) invalidity. Even if retirement can take place over a range of ages, it 
will still be possible to work with a double decrement table if retirements can be assumed 
to take place at integral ages; otherwise it will be necessary to adopt a triple decrement 
table. 

The active service table is represented by the function {/"}, b <x <r, where lx 

signifies the number of persons continuing to be in active insured status at age x out 
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of an initial hypothetical number of, say, 100,000 entering the scheme at age b. It can be 
constructed for any given pension scheme after adopting appropriate assumptions for the 
rates of mortality (çx) and invalidity (¿x) and, if necessary, of retirement {rx). The formu- 
lae to be used for its construction would depend upon whether the assumptions relate to 
independent or dependent rates. 
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NUMERICAL ILLUSTRATIONS 

1    A hypothetical pension scheme 

In order to illustrate the various financial systems discussed in Chapters 1 and 2, a 
simple, hypothetical pension scheme has been adopted. Only retirement pensions are 
considered, payable for life from age 65. The pension formula is 1 per cent of the 
final salary per year of contributory service. Persons over 65 at the outset are not 
entitled to any pension. 

The Lexis diagram (figure 1) enables the components of the pension scheme and its 
evolution over time to be visualized. 

2 The initial insured population 

The initial insured population numbers 10,000 persons, distributed by age as shown in 
the second column of table 1. This population is used for the demonstration of the pro- 
jections and the financial systems, in tables 3, 4 and 5. (The distribution in the third 
column is used for table 7 only - see section 7, below.) The distribution in the second 
column is a stable age distribution resulting from the demographic assumptions - see 
section 3, below. Table 1 also shows the average annual starting salaries of the initial 
population and the pre-scheme service of this population. 

3 Demographic assumptions 

The intrinsic force of growth of the insured population (p) is assumed to be 1 per cent. 
New entrants are assumed to enter at a single age, 20. The rates of decrement of the 
insured population are assumed to remain constant, and mortality is the only decrement 
which is considered. Table 2 shows the service table for active insured persons and the life 
table for pensioners, corresponding to the assumed rates of decrement. 

In order to simplify the computations, the same force of demographic growth, rates 
of decrement and entry age are assumed to have operated also in the past and for a 
sufficiently long time, with the consequence that the age distribution of the insured 
population has become stable when the scheme commences - see section 2, above. 
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4    Economic assumptions 

The relative progression with advancing age of the insured salary for an individual 
member (the salary scale) is also shown in table 2. In addition, the force of growth of 
the general level of salaries (7) is assumed to be 3 per cent. The force of pension indexa- 
tion (J5) is also assumed at 3 per cent. The force of interest (é) is assumed at 6 per cent. 

5 Demographic and financial projections 

The demographic and financial projections are made for two variants: 

• variant 1 : pre-scheme service is not recognized; 

• variant 2: pre-scheme service is fully recognized. 

The density factor has been assumed at 100 per cent. Administrative expenses have 
been ignored. The results are shown in table 3. For both variants demographic maturity 
is reached in 35 years. Financial maturity is reached in 35 years for variant 2 and in 80 
years for variant 1. The financial projections are illustrated in figure 2. 

6 Demonstration of financial systems 

The results of the calculations for variant 1 are given in table 4 and those for variant 2 in 
table 5. The tables show the time-related contribution rates and reserves at ten-year inter- 
vals. Reserves are shown both in monetary units and as a multiple of the corresponding 
salary bills. 

The scaled premium system is demonstrated for variant 1 only. Funding methods for 
occupational pension schemes are considered for variant 2 only; the initial accrued 
liability is assumed to be amortized by equal annual instalments over the active lifetime 
of the youngest initial entrant. 

The above results are illustrated in figures 3 to 8 and in figures 11 to 14. 
Table 6 presents the age-related contribution rate and reserve functions for the 

individual actuarial cost methods discussed in Chapter 2. These results are illustrated 
in figures 9 and 10. 

7 Sensitivity of premiums to parametric variations 

The sensitivity of selected premiums to changes in the assumptions concerning the deter- 
mining parameters is illustrated in table 7. These results correspond to variant 2 (full 
recognition of pre-scheme service). 

In order to demonstrate the effect of the variation of the force of demographic 
growth, for the purpose of this table, the age distribution of the initial population has 
been assumed independently of any of the simulated forces of demographic growth. 
This distribution, shown in the third column of table 1, differs slightly from the stable 
age distribution assumed for the main demonstrations. Therefore, while the results in 
table 7 are mutually consistent, they are not strictly comparable with those in tables 3, 
4 and 5. 

Note: The $ sign has been used in tables 1 to 6 to indicate the monetary unit. 
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Table 1    The data 

Age group Initial population Annual salary ($) Past service (years) 

Tables 3, 4, 5 Table 7 

20-25 1415 1478 1330 2.5 
25-30 1339 1381 1940 7.5 
30-35 1265 1289 2440 12.5 
35-40 1193 1201 2850 17.5 
40-45 1121 1114 3160 22.5 
45-50 1047 1027 3 370 27.5 
50-55 967 937 3480 32.5 
55-60 878 840 3 500 37.5 
60-65 775 733 3 500 42.5 
Total 10000 10000 

Table 2   The basis 

Active lives Pensioners 

Age Service table Salary scale Age Life table 

20 1000 100 65 1000 
25 995 165 70 861 
30 989 221 75 677 
35 982 267 80 463 
40 972 302 85 254 
45 958 328 90 101 
50 936 344 95 25 
55 903 350 100 0 
60 851 350 
65 775 350 
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Table 3    Projections 

Year Numbers Amounts 

Actives Pensioners Ratio (%) Salary bill Variant 1 Variant 1 Variant 2 Variant 2 
($ '000) Expenditure 

($ '000) 
PAYG 
(%) 

Expenditure 
($ '000) 

PAYG 
(%) 

1 10000 0 0 27188 0 0 0 0 
11 11052 1294 11.71 40522 328 0.81 2748 6.78 
21 12214 2137 17.50 60451 1665 2.75 6127 10.14 
31 13499 2 537 18.79 90184 4616 5.12 9819 10.89 
41 14918 2811 18.84 134538 10150 7.54 14685 10.92 
51 16487 3107 18.84 200709 19574 9.75 21907 10.92 
61 18221 3433 18.84 299422 32054 10.71 32685 10.92 
71 20138 3 795 18.84 446687 48706 10.90 48758 10.92 
81 22255 4194 18.84 666380 72742 10.92 72742 10.92 

Note: Numbers and amounts "in force" at the beginning of the year indicated. 

Table 4a   Variant 1: GAP, TFS and AFS systems 

Year GAP TFS AFS 

Contri- Reserves Multiple Contri- Reserves Multiple Contri- Reserves Multiple 
bution ($ million) of salary bution ($ million) of salary bution ($ million) of salary 
rate (%) bill rate (%) bill rate (%) bill 

1 6.08 0 0 0 0 0 6.53 0 0 
11 6.08 26 0.64 2.05 3 0.08 6.41 28 0.69 
21 6.08 77 1.27 4.10 15 0.25 6.24 82 1.35 
31 6.08 162 1.79 6.14 39 0.43 6.06 172 1.90 
41 6.08 292 2.17 8.19 84 0.62 5.89 308 2.29 
51 6.08 473 2.36 9.22 159 0.79 5.83 499 2.48 
61 6.08 723 2.41 9.22 253 0.85 5.83 760 2.54 
71 6.08 1081 2.42 9.22 379 0.85 5.83 1136 2.54 
81 6.08 1613 2.42 9.22 566 0.85 5.83 1695 2.54 

Notes i: API = 6.53 per cent; AP2 = 5.83 per cent. TFS and AFS contribution rates at the beginning of the year 
indicated. Reserves at the beginning of the year indicated. 
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Table 4b   Variant 1: SCP1 and SCP2 systems 

SCPl SCP2 

Period       Contri-     Year      Reserves        Multiple   Period       Contri-     Year      Reserves        Multiple 
(years)      bution ($ million)     of salary   (years)      bution ($ million)     of salary 

rate(%) bill rate (%) bill 

'  1 0 0 ' 1 0 0 
01:20 1.65    i 11 6 0.15 01:20 2.15      j 11 8 0.21 

f21 11 0.18 '21 18 0.31 
21:40 5.35    i 31 35 0.39 21:40 6.09      ] 31 56 0.62 

>41 49 0.37 >41 98 0.73 
41:60 8.61 51 89 0.44 41:60 8.82      \ 51 182 0.91 

>61 105 0.35 >61 282 0.94 
61:80 9.63    \ 71 131 0.29 61:80 9.02      | 71 425 0.95 

^81 145 0.22 -81 634 0.95 
81 + 10.49 81 + 9.02 

Notes: SCP contribu tion rates for the 20 year period indicated. Reserves at the beginning of the year indicated. 

Table 5a    Variant 2: GAP/TFS and AFS systems 

GAP/TFS AFS 

Year Contribution Reserves Multiple of Contribution Reserves Multiple of 
rate (%) ($ million) salary bill rate (%) ($ million) salary bill 

1 9.22 0 0 15.32 0 0 
11 9.22 25 0.63 13.76 50 1.23 
21 9.22 50 0.82 11.49 118 1.94 
31 9.22 77 0.85 9.02 211 2.34 
41 9.22 114 0.85 6.78 339 2.52 
51 9.22 170 0.85 5.83 511 2.54 
61 9.22 254 0.85 5.83 762 2.54 
71 9.22 379 0.85 5.83 1136 2.54 
81 9.22 566 0.85 5.83 1695 2.54 

Note: API = 15.32 per cent; AP2 = 5.83 per cent. AFS contribution rates and reserves at the beginning of the year 
indicated. 
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Table 5b   Variant 2: ACC1 and ACC2 systems 

ACCl ACC2 

Year Contribution Reserves Multiple of Contribution Reserves Multiple of 
rate (%) ($ million) salary bill rate (%) ($ million) salary bill 

1 13.99 0 0 16.18 0 0 
11 11.71 42 1.02 12.85 49 1.21 
21 10.18 91 1.50 10.61 109 1.81 
31 9.15 155 1.72 9.12 191 2.12 
41 8.47 251 1.87 8.12 314 2.33 
51 7.07 387 1.93 6.08 486 2.42 
61 7.07 578 1.93 6.08 724 2.42 
71 7.07 863 1.93 6.08 1081 2.42 
81 7.07 1288 1.93 6.08 1 612 2.42 

Note: Initial accrued liability in $ million: ACCl, 29; ACC2, 43. Contribution rates and reserves at the beginning 
of the year indicated. Contributions include "normal" contributions and payments towards the amortization of 
the initial accrued liability. 

Table 5c   Variant 2: ENT and AGG systems 

ENT AGG 

Year Contribution Reserves Multiple of Contribution Reserves Multiple of 
rate (%) ($ million) salary bill rate (%) ($ million) salary bill 

1 16.73 0 0 15.32 0 0 
11 13.13 51 1.25 12.45 46 1.14 
21 10.73 114 1,88 10.45 102 1.69 
31 9.11 200 2.22 9.05 178 1.97 
41 8.03 330 2.45 8.07 288 2.14 
51 5.83 511 2.54 7.39 454 2.26 
61 5.83 762 2,54 6.92 703 2.35 
71 5.83 1 136 2.54 6.59 1076 2.41 
81 5.83 1695 2.54 6.36 1632 2.45 

Notes: Initial accrued liability in $ million: ENT, 46. Contribution rates and reserves at the beginning of the year 
indicated. Contributions include "normal" contributions and payments towards the amortization of the initial 
accrued liability. 
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Table 6   Age-related contribution rate and reserve functions (cohort enterting at 
f = 0) 

ACC1 ACC2 ENT 

Age Contri- Reserves %of Contri- Reserves %of Contri- Reserves %of 
bution ($ '000) terminal bution ($ '000) terminal bution ($ '000) terminal 
rate (%) reserves rate (%) reserves rate (%) reserves 

20 0.57 0 0 7.78 0 0 5.83 0 0 
25 1.18 7 0.13 5.51 52 1.00 5.83 48 0.92 
30 1.86 31 0.59 4.80 141 2.70 5.83 146 2.80 
35 2.78 89 1.71 4.65 287 5.51 5.83 316 6.06 
40 3.93 210 4.03 4.83 517 9.92 5.83 586 11.24 
45 5.54 448 8.59 5.24 872 16.73 5.83 994 19.07 
50 7.73 885 16.98 5.94 1413 27.11 5.83 1589 30.48 
55 10.94 1648 31.61 7.04 2 225 42.68 5.83 2 433 46.67 
60 16.43 2 955 56.69 8.67 3 433 65.85 5.83 3 605 69.15 
65 26.02 5 213 11.07 5 213 5.83 5 213 

Table 7   Sensitivity of premiums to parametric changes 

Simulation    Parameters (%) Premiums (%) 

(a) General case 
P S 7 /3 GAP PAYG* AP2* TFS* 

1                 1.00 6.00 3.00 2.75 8.82 10.68 5.71 9.03 
2                 1.00 6.25 3.00 2.75 8.63 10.68 5.27 8.85 
3                 1.00 5.75 3.00 2.75 9.02 10.68 6.19 9.21 
4                 1.10 6.00 3.00 2.75 8.72 10.36 5.71 8.84 
5                 0.90 6.00 3.00 2.75 8.93 11.01 5.71 9.22 
6                 1.00 6.00 3.25 2.75 8.84 10.45 6.07 9.03 
7                 1.00 6.00 2.75 2.75 8.81 10.92 5.37 9.03 
8                 1.00 6.00 3.00 3.00 9.00 10.92 5.83 9.21 
9                 1.00 6.00 3.00 2.50 8.65 10.45 5.60 8.85 

(b) Under wage indexation 
P ¿-7 GAP PAYG* AP2* TFS* 

10               1.00 3.00 9.00 10.92 5.83 9.21 
11               1.00 3.25 8.81 10.92 5.37 9.03 
12               1.00 2.75 9.21 10.92 6.32 9.40 
13               1.10 3.00 8.90 10.59 5.83 9.02 
14               0.90 3.00 9.10 11.25 5.83 9.41 

Note: p = force of population growth; S = force of interest; 7 = = force of salary escalation; /3 = force of pension 
indexation. 

106 



Appendix 2 

Figure 1    The Lexis diagram 
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Figure 2   Benefit expenditure as a percentage of insured salary bill 
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Figure 3.    Variant 1: PAYG, GAP, TFS and AFS systems - contribution rates 
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Figure 4.    Variant 2: PAYG, GAP, TFS and AFS systems - contribution rates 
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Figure 5.    Variant 1: GAP, TFS and AFS systems - reserves as a multiple of salary 
bill 
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Figure 6.    Variant 2: GAP, TFS and AFS systems - reserves as a multiple of salary 
bill 
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Figure 7.    Variant 1: The scaled premium system (compared with PAYG and GAP) 
contribution rates 
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Figure 8.   Variant 2: The scaled premium system (compared with GAP) - reserves as 
a multiple of salary bill 
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Figure 9.    Individual cost methods: Age-related contribution rate function 
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Figure 10.    Individual cost methods: Age-related reserve function (expressed as a 
percentage of terminal reserve) 
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Figure 11.    Variant 2: individual cost methods (compared with GAP) - contribution 
rates 
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Figure 12.   Variant 2: Individual cost methods (compared with GAP) - reserves as a 
multiple of salary bill 
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Figure 13.    Variant 2: Aggregate cost method (compared with AFS, ENT and GAP) • 
contribution rates 
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Figure 14.    Variant 2: Aggregate cost method (compared with AFS, ENT and GAP) • 
reserves as a multiple of salary bill 
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GLOSSARY OF PRINCIPAL FINANCIAL SYSTEMS 
AND FUNDING METHODS 

Acronym 

PAYG 

GAP 

AFS 

TFS 

SCP 

ACC 

Full title 

Pay as you go 

General average 
premium system 

"Autonomous 
funding system" 

Terminal funding 
system 

Scaled premium 
system 

Accrued benefit 
method 

Brief description 

Contributions exactly balance expenditures 
in selected time intervals (e.g. annually) 

Contribution rate remains level ad infinitum 

Initial population and new entrants 
constitute separate autonomous risk pools, 
applying respective average premiums (API 
and AP2) as contribution rate 

Contributions exactly balance capital value 
of new pension awards in selected time 
intervals (e.g. annually) 

Steadily increasing level contribution rates 
in successive intervals, with a non- 
decreasing reserve fund. Specific variants: 
the reserve attains a local maximum (SCP1) 
or attains the growth rate of the financially 
mature situation. (SCP2) at the end of each 
interval 

Age-related contribution rate determined 
such that for new entrants, age-related 
reserve fund equals accrued benefits based 
on current service and current (ACC1) or 
projected (ACC2) salary, allowing for 
pension indexation. Initial accrued liability 
funded separately (e.g. through uniform 
payments spread over active lifetime of 
youngest initial entrant) 
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Acronym Full title Brief description 

ENT Entry age method For new entrants, benefit funded through 
level contribution rate over active lifetime. 
Initial accrued liability funded as for ACC 

AGG Aggregate method Time-related contribution rate is that which 
produces the closed-fund actuarial balance 
at that time 
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LIST OF SYMBOLS 

The following is a list of the special symbols which have been adopted for the purposes 
of this book, in the order in which they are introduced. Basic actuarial symbols and 
functions are not included here, but will be found in Appendix 1. Similarly, the special 
commutation functions used in Chapter 6 for the application of the present value tech- 
nique, which have been largely standardized in actuarial literature, are not reproduced. 

Chapter 1 
8 Force of interest 
p Force of growth of new entrants 
7 Force of escalation of insured salaries 
/? Force of pension indexation 
¡li Force of mortality at age x 
/4 Force of invalidity at age x 
6 Force of inflation 
A{t) Active population function 
R{t) Retired population function 
S{t) Insured salary function 
B{t) Expenditure function 
u> Limit of life 
uii Time of attainment of demographic maturity by pension scheme 
W2 Time of attainment of financial maturity by pension scheme 
C{t) Contribution rate function, time related 
V{t) Reserve function, time related 
PAYG Pay-as-you-go financial system 
PAYG„ PAYG contribution rate for the «th financial year 
GAP General average premium system (GAP contribution rate) 
B\ (t) Expenditure function for the initial population 
B2{t) Expenditure function for new entrants 
SI (t) Insured salary function for the initial population 
S2{t) Insured salary function for new entrants 
API Average premium for the initial population 
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AP2 Average premium for new entrants 
AFS "Autonomous funding system" 
Ka{t) Capitalized value of pensions awarded at time t 
TFS Terminal funding system 
TFS(t) Terminal funding system contribution rate function 
K "Reserve ratio" 
A "Balance ratio" 
SCP Scaled premium system (variants, SCP1 and SCP2) 
PAYG* Pay-as-you-go premium in the financially mature situation 
7r(«, m) Scaled premium system contribution rate for the interval («, m) 

Chapter 2 
K{x) 
F{x) 
b 
r 
Sx 
l" Lx 

lPx 
nai(a) ±yx 

pjas(a) 

SPx{a) 

ACC1 
ACC2 
ENT 
AGO 

Age-related contribution rate function of a cohort 
Age-related reserve function of a cohort, per unit salary at entry 
Entry age of a cohort (more generally, lowest entry age) 
Retirement age of a cohort (more generally, highest retirement age) 
Relative salary scale function 
Survival function for active persons 
Survival function for retired persons 
Commutation function of level 1, based on the active survival function 
and force of interest a, and incorporating the salary scale function 
Commutation function of level 2, integral of the level 1 function over the 
range {x, r) 
Continuously payable life annuity, based on the life table for pensioners 
and on force of interest a 
Accrued benefit cost method 1 
Accrued benefit cost method 2 
Entry age cost method 
Aggregate cost method 

Chapter 3 
Ac{x, t) 
Re{x, t) 
Sa{x, i) 
Behc, t) 
-as\a) 
ax:ñ\ 

AP2* 
TFS* 
GAP* 
ADTS 
ADTB 
A(x) 

Bfl00 

Active population function, age and time related 
Retired population function, age and time related 
Insured salary function, age and time related 
Expenditure function, age and time related 
Continuous fixed-term life annuity, based on the service table for active 
persons and on force of interest a, the amount of the annuity increasing 
from unity in line with the salary scale 
Average premium for new entrants (= AP2) 
Terminal funding premium in the mature situation 
General average premium under wage indexation 
Average discounted term of insured salaries 
Average discounted term of expenditures 
Contribution density function 
Weighted averages of contribution density 
Expenditure at time z (> t) on pensions in payment at time t 
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B¡,{z) Expenditure at time z (> t) on pensions awarded after time t 
Vb{t) Reserve for pensioners at time t 
Va{t) Reserve for active persons at time t 
6{u) The force of interest regarded as a function of time 
4) "Real" force of interest ( = <5 — 7) 

Chapter 4 
7* Force of growth of salary, incorporating escalation and salary scale 

effects 
(fi* Difference between force of growth of salary and force of interest (7* — S) 

Chapter 5 
Fd{n) Value placed on the reserve at time n 
n, Vector of demographic projection aggregates 
Q, Matrix of one-year transition probabilities 
I{t) Invalidity pensioners function 
lV{t) Widow/widower pensioners function 
0{t) Orphan pensioners function 
Px Transition probability, status r to r 
q^ Transition probability, status r to J 

l'x Survival function for invalids 
r* Lowest retirement age 
I* Survival function for widows/widowers 
y* Youngest age of a widow/widower 
% Survival function for orphan pensioners 
z* Age limit for orphans' pensions 
Wx Proportion married at age x 
yx Average age of the spouse 
rix Average number of orphans of a person dying at age x 
Zx Average age of the orphans 
Act{x, s, t) Active population function, age, service and time related 
In{x, t) Invalid pensioner function, age and time related 
Wi{x, t) Widow/widower pensioner function, age and time related 
N{x, t) New entrant function, age and time (year) related 
Z(x, t) Active survivors from N{x, t) at the end of the year of entry 
pr{x) Proportionate age distribution of new entrant generation 
7(r) Rate of salary escalation in projection year t 
/?(?) Rate of pension indexation in projection year í 
i{t) Rate of investment return in projection year t 
dc{x) Contribution density at age x 
db{x) Benefit density at age x 
j{t) Adjustment factor for projecting the relative salary function 
s{x, i) Average salary function, age and time related 
sn{x, t) Average salary function for new entrants 
<è{x) Distribution function of the standard normal variate 
s\ {x, t) Average salary function, low income group 
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s2{x, t) Average salary function, medium income group 
i3(x,t) Average salary function, high income group 
ss{x, i) Relative salary function 
b{x, t) Average benefit function 
sv(x, i) Accumulated service function 
IA{t) Active population function, initial population projections 
NA{t) Active population function, standard new entrant projections 
IR{t) Pensioner population function, initial population projections 
NR{t) Pensioner population function, standard new entrant projections 
TR{t) Total pensioner population function 
na[t) Number of new entrants in ith projection year 
TS[t) Total insured salaries, at end of ith projection year. 
TP{t) Total pensions, at end of ith projection year. 
ADJ(i) Adjustment factor for binding 
S, Insured salary bill, projection year t 
B, Total expenditure, projection year t 
OS, Insured salary bill of year t, discounted to valuation date 
DBt Total expenditure of year t, discounted to valuation date 
TDS, Cumulated sum of discounted salary bills 
TDB, Cumulated sum of discounted total expenditures 

Chapter 6 
PVS(x) Probable present value of insured salaries 
PVR(x) Probable present value of retirement pensions 
PVI(x) Probable present value of invalidity pensions 
PVW1 (x) Probable present value of widows'/widowers' pensions (death in service) 
PVW2(x) Probable present value of widows'/widowers' pensions (death after inva- 

lidity) 
PVW3(x) Probable present value of widows'/widowers' pensions (death after 

retirement) 
p{r, x) Retirement pension rate, for cohort aged x on valuation date 
p{t, x) Invalidity pension rate at age t, for cohort aged x on valuation date 
ps{x) Past service on valuation date 
^«(x) Average insured salary of standard new entrant generation on valuation 

date 
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APPENDIX 5 

THE VARIANT SCP1 OF THE SCALED 
PREMIUM SYSTEM 

This appendix is concerned with the specific variant of the scaled premium system, under 
which the level premium in any interval (n, m) is positive and leads to a positive non- 
decreasing reserve fund, reaching a local maximum at the end of the interval. It is 
shown that the two conditions 

B'it) > 0 (A5.1a) 

Bit) - Sit) (A5-lbj 

are, together, sufficient for the existence of this variant. It will be noted that the second 
condition can also be expressed as 

which implies that the pay-as-you-go premium is a non-decreasing function of t. It 
should also be noted that in view of (A5.1b), S'{t)>0 implies B'{t)>0> but not vice 
versa. Therefore, (A5.1a) leaves the sign of S'{t) uncertain, that is, S(t) might be an 
increasing or a decreasing function. 

The required result is proved by induction, in three stages. Assuming that SCP1 exists 
for the interval preceding a specific interval («, m), it is shown to exist for that interval. It 
is then easily shown that the system exists for the first interval {0,p). It therefore follows 
that SCP1 exists for the whole time-range of the pension scheme. 

THEOREM 1 

Statement: if the conditions (A5.1a) and (A5.1b) are satisfied in the interval (n,m), the 
function 

Bjt) e-6' + S/„' Bjz) e-6z dz - 6V{n) e'" 
' S{i)e'6t + 6^S{z)e-Szdz 
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where V(n) denotes the reserve at the beginning of the interval, is positive and an 
increasing function of t in the interval, provided the SCP1 system exists in the preceding 
interval. 

Proof: Let the reserve under the application of 7r(i) in (n, i) be denoted by R{u,t), 
n <u < t, given by 

R{u, t) e-Su = V{rí) e'6" + 7r(í) [" ^(z) e'6' dz • B{z)e-!'zdz (A5.4) 

It will be noted that expression (A5.3) is, in fact, the usual formula for the SCP1 premium 
for the interval («, i), which can be derived by putting « = í in the fundamental differen- 
tial equation for the interval (n, t) - expressed as a partial differential equation in the 
present context - that is, 

dR^ ^ = dR{u, t) + TT{t)S{u) - B{u) (A5.5) 

equating it to zero, and substituting for R{u, t) in (A5.4). 
Let the numerator and denominator of (A5.3) be denoted by N{t) and D(t). Then 

D(t) > 0; and N{t) > 0 provided 6V{n) < B(n), where Vin), being the starting reserve 
for the interval (n,m), is equally the ending reserve of the previous interval, say (#,«) 
(see note 1). Since, by assumption, SCP1 exists in the previous interval , TT*, the level- 
premium in that interval is positive and satisfies the condition 

6V{n) + n*S{n) - B{n) = 0 (A5.6) 

which implies 8V{n) < B{n) This ensures that 7r(i) > 0. 
Differentiating (A5.3) w.r.t. t and simplifying, 

•K\i)D{tf e6' = D{t)B'{t) - N{t)S\t) (A5.7) 

It can be shown (see note 2) that the PAYG premium at the end of the interval (n,t) 
exceeds 7r(t), that is 

W)  W) {    * 
Multiplying both sides by S{t)D{t) which, being positive, does not change the sign 

Bit)D{t) > S{t)Nit) 

It will be noted that both sides of the above inequality are positive. Therefore, 

_J  1 
N{t)S{t) > B{t)D{t) 

Also, multiplying both sides of (A5.1b) by S{t)B{t), which being positive, does not 
change the sign 

B'it) > S{t)S'{t)B{t) 

Note that the left-hand side of the above inequality is positive, in view of (A5.1a). Hence, 
multipling both sides by the corresponding sides of the previous inequality - which has 
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positive elements on both sides - will not change the sign. Therefore, 

B\t)     S'jt) 
N{t) > D{t) 

Multiplying both sides by N{t)D{t) which, being positive, will not change the sign 

Dit)B'it) > N{t)S'it) (A5.9) 

Hence, from (A5.7), Tr'{t) > 0. This proves that Tr{t) is an increasing function of (. 

THEOREM 2 

Statement: Let V{t) (= R(t, m) in the notation of Theorem 1) denote the reserve resulting 
from the application of the premium 7r(m) in the interval (n,m). Then V{t) is an 
increasing function, that is, V'{t) > 0 for n < t < m, and V'{m) = 0. 

Proof: The fundamental differential equation at any point within the interval («, m) can 
be written as 

V'{t) = 6V{t) + 7r(w)5(i) - B{t) 

where V{t) is given by 

Vieje-6'=V{n)e-s" + irim) f S{z)e-Szdz- [ B{z)e-Szdz 

Eliminating V{t) between the above two equations and simplifying, 

V'{t) = e6'D{t)[n{m) - 7r{t)] (A5.10) 

In view of Theorem 1, it follows that V'{t) > 0 for « < í < m and that V'(m) = 0. 
Incidentally, it will also be obvious that if V{n) > 0, then V{t) > 0 for « < í < m. But 

V(n) = V(0) = 0 in the first interval {0,p). Therefore, in general, V{t)>0. 

THEOREM 3 

Statement: If TT* denotes the SCP1 premium in a preceding interval (<?,«), n{in) > TT*. 

Proof: From note 1, it can be seen that 

Ltt^n+W)j =• 
Sin 

In view of Theorem 1,7r'(i) > 0. Therefore, 

B{n) - SV{n 
n{t) > - 

S{n) 

Now, in view of (A5.6) 

,     B{n) - 6V{n) 
7r   =• 

S{n 
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Hence, 7r(í) > TT*, and in particular, 

7r(w) > TT* 

CONCLUSION 
Starting from the conditions (A5.1a) and (A5.1b) and the assumption that SCP1 exists in 
the interval preceding (n, m), Theorem 1 was established. Theorem 2, which follows from 
Theorem 1, showed that, if the premium over the interval («, m) is determined according 
to the formula (A5.3), the reserve function increases over the interval and reaches a local 
maximum at the end of the interval. Further, Theorem 3 showed that the premium deter- 
mined according to this formula is greater than the premium determined according to the 
same formula in the preceding interval. 

In the first interval {0,p), the starting reserve V{0) = 0, and Theorems 1 and 2 can be 
proved on the same lines. Theorem 3 does not apply in the first interval. Since V{0) = 0, 
the SCP1 premium in (0,^) is positive (see A5.3). 

It therefore follows by induction that under the conditions (A5.1a) and (A5.1b), 
SCP1 exists for the whole time-range of the pension scheme. 

It is emphasized that the conditions (A5.1a) and (A5.1b) have been proved to be 
sufficient for SCP1 to exist. They may not be necessary for its existence. 

Incidentally, it was also proved that the premium function 7r(i) and the reserve 
function V{t) are both positive. 

Note 1: N'Çt) = B'[t) e'6' . Similarly, D'{t) = S'{i) e'6' . 
Therefore N'{t) > 0. 

Lt.t^n+{N{t)) = {B[n)-8V{rí))e-6n 

Therefore N[i) > 0 if 8V{n) < B{n). 

Note 2: From (A5.3) it will be seen that 7r(i) can be regarded as the weighted average of 
B{t)/S{t) and 

¡¡lB{z)e-6zdz-V{n)e-6n 

In view of (A5.2), 

B{t)^ÜB{z)e-s'dz 
S{t)- tiS{z)e-6*dz 

> AVP(/) 

It therefore follows that 

|§>7rW>AVPW 
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APPLICATION OF THE LOGNORMAL DISTRIBUTION 

Let y denote the salary and let z = log,,^, where 0 < >> < oo and —oo < z < oo. It is 
assumed that y has the lognormal distribution, or in other words, z has the normal 
distribution. Let the parameters of the distribution of z be denoted by ¡J. and a2. The 
probability density function of z is 

The parameters of the distribution oí y can be expressed in terms of integrals of the 
distribution of z, simplified and then expressed in terms of the distribution function of the 
standard normal varíate. By this procedure the expressions (5.27) and (5.28) of Chapter 5 
for the mean and variance of y can be derived. These are standard results. 

The same procedure can be applied to derive expression (5.31) for the average oí y in 
the interval {ya,yb)- Let za and zb denote the corresponding values of z. Let F{y) and G{y) 
denote the distribution functions of y and z. Then, 

F{yt) - F{ya) = G{zb) - G{za) (A6.2) 

The required average, denoted by A, is given by 

F{yb)-F{ya) 

Changing the variable to z in the numerator, 

(A6.3) 

ff ezp(z) dz 

The integrand of the numerator which, in view of (A6.1), has the expression 

(TV27r       V       2<T' 

can be simplified as 

expi.+^Wf-^     02^) i^') 
(TV27r       V       2y        V 2i7' 
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By changing to the standardized variable t, 
z — a 

t = --a 
a 

and noting - see (5.28) - that the overall mean of the distribution of j^, say B, is 

.S = exp Í /i + — 

It follows that A can be expressed, in terms of 5 and the distribution function $(i) of the 
standard normal varíate, as 

where 

and 

<S>{M>b) - *(^) 

¿a 
wa = — a 

wb= — 
-M 
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